我有一个简单的代码可以在Google Colab上运行(我使用CPU模式):
import numpy as np
import pandas as pd
## LOAD DATASET
datatrain = pd.read_csv("gdrive/My Drive/iris_train.csv").values
xtrain = datatrain[:,:-1]
ytrain = datatrain[:,-1]
datatest = pd.read_csv("gdrive/My Drive/iris_test.csv").values
xtest = datatest[:,:-1]
ytest = datatest[:,-1]
import tensorflow as tf
from tensorflow.keras.layers import Dense, Activation
from tensorflow.keras.utils import to_categorical
## SET ALL SEED
import os
os.environ['PYTHONHASHSEED']=str(66)
import random
random.seed(66)
np.random.seed(66)
tf.set_random_seed(66)
from tensorflow.keras import backend as K
session_conf = tf.ConfigProto(intra_op_parallelism_threads=1, inter_op_parallelism_threads=1)
sess = tf.Session(graph=tf.get_default_graph(), config=session_conf)
K.set_session(sess)
## MAIN PROGRAM
ycat = to_categorical(ytrain)
# build model
model = tf.keras.Sequential()
model.add(Dense(10, input_shape=(4,)))
model.add(Activation("sigmoid"))
model.add(Dense(3))
model.add(Activation("softmax"))
#choose optimizer and loss function
model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
# train
model.fit(xtrain, ycat, epochs=15, batch_size=32)
#get prediction
classes = model.predict_classes(xtest)
#get accuration
accuration = np.sum(classes == ytest)/len(ytest) * 100
我已在Reproducible results using Keras with TensorFlow backend处阅读了用于创建可重复性代码的设置,并将所有代码放在了同一单元格中。但是每次我运行该单元格(使用shift + enter
运行该单元格)时,结果(例如损失)总是不同的。
就我而言,如果只有以下情况,则可以复制上面代码的结果:
python3 file.py
)是否有一些我想念的东西可以使结果重现而不重新启动运行时?
答案 0 :(得分:1)
您还应该在kernel_initializer
层中修复Dense
的种子。因此,您的模型将类似于:
model = tf.keras.Sequential()
model.add(Dense(10, kernel_initializer=keras.initializers.glorot_uniform(seed=66), input_shape=(4,)))
model.add(Activation("sigmoid"))
model.add(Dense(3, kernel_initializer=keras.initializers.glorot_uniform(seed=66)))
model.add(Activation("softmax"))
答案 1 :(得分:1)
我已经尝试使用Keras和Google Colab(CPU)来使Tensorflow 2.0可再现地工作,并使用与上面@malioboro所述类似的Iris数据集处理版本。这似乎可行-可能有用:
# Install TensorFlow
try:
# %tensorflow_version only exists in Colab.
%tensorflow_version 2.x
except Exception:
pass
# Setup repro section from Keras FAQ with TF1 to TF2 adjustments
import numpy as np
import tensorflow as tf
import random as rn
# The below is necessary for starting Numpy generated random numbers
# in a well-defined initial state.
np.random.seed(42)
# The below is necessary for starting core Python generated random numbers
# in a well-defined state.
rn.seed(12345)
# Force TensorFlow to use single thread.
# Multiple threads are a potential source of non-reproducible results.
# For further details, see: https://stackoverflow.com/questions/42022950/
session_conf = tf.compat.v1.ConfigProto(intra_op_parallelism_threads=1,
inter_op_parallelism_threads=1)
# The below tf.set_random_seed() will make random number generation
# in the TensorFlow backend have a well-defined initial state.
# For further details, see:
# https://www.tensorflow.org/api_docs/python/tf/set_random_seed
tf.compat.v1.set_random_seed(1234)
sess = tf.compat.v1.Session(graph=tf.compat.v1.get_default_graph(), config=session_conf)
tf.compat.v1.keras.backend.set_session(sess)
# Rest of code follows ...
# Some adopted from: https://janakiev.com/notebooks/keras-iris/
# Some adopted from the question.
#
# Load Data
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder, StandardScaler
iris = load_iris()
X = iris['data']
y = iris['target']
names = iris['target_names']
feature_names = iris['feature_names']
# One hot encoding
enc = OneHotEncoder()
Y = enc.fit_transform(y[:, np.newaxis]).toarray()
# Scale data to have mean 0 and variance 1
# which is importance for convergence of the neural network
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Split the data set into training and testing
X_train, X_test, Y_train, Y_test = train_test_split(
X_scaled, Y, test_size=0.5, random_state=2)
n_features = X.shape[1]
n_classes = Y.shape[1]
## MAIN PROGRAM
from tensorflow.keras.layers import Dense, Activation
# build model
model = tf.keras.Sequential()
model.add(Dense(10, input_shape=(4,)))
model.add(Activation("sigmoid"))
model.add(Dense(3))
model.add(Activation("softmax"))
#choose optimizer and loss function
model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
# train
model.fit(X_train, Y_train, epochs=20, batch_size=32)
#get prediction
classes = model.predict_classes(X_test)