说我有以下内容
library(data.table)
cars1 = setDT(copy(cars))
cars2 = setDT(copy(cars))
car_list = list(cars1, cars2)
class(car_list) <- "dd"
`[.dd` <- function(x,...) {
code = rlang::enquos(...)
cars1 = x[[1]]
rlang::eval_tidy(quo(cars1[!!!code]))
}
car_list[,.N, by = speed]
所以我希望通过定义cars1
函数对cars2
和[.dd
进行任意操作,以便使...
中执行的所有操作都由cars1
执行和cars2
使用[
data.table语法,例如
car_list[,.N, by = speed]
应该执行以下操作
cars1[,.N, by = speed]
cars2[,.N, by = speed]
我也想要
car_list[,speed*2]
要做
cars1[,speed*2]
cars2[,speed*2]
基本上,...
中的[.dd
必须接受任意代码。
以某种方式我需要捕获...
,所以我尝试执行code = rlang::enquos(...)
,然后rlang::eval_tidy(quo(cars1[!!!code]))
无法正常工作并给出错误消息
[.data.table
(cars1,〜,〜.N,by =〜speed)中的错误: 参数“ i”丢失,没有默认值
答案 0 :(得分:5)
虽然不是rlang
类型的咒语,但这种方法似乎效果很好:lapply(dt_list, '[', ...)
该代码对我来说更具可读性,因为它明确说明了所使用的方法。如果看到car_list[, .N, by = speed]
,我会期望使用默认的data.table
方法。
以下是该方法的一些示例:
lapply(car_list, '[', j = .N, by = speed)
# or
# lapply(car_list, '[', , .N, speed)
[[1]]
speed N
1: 4 2
2: 7 2
3: 8 1
4: 9 1
5: 10 3
...
[[2]]
speed N
1: 4 2
2: 7 2
3: 8 1
4: 9 1
5: 10 3
...
lapply(car_list, '[', j = speed*2)
# or
# lapply(car_list, '[', , speed*2)
[[1]]
[1] 8 8 14 14 16 18 20 20 20 22 22 24 24 24 24 26 26
[18] 26 26 28 28 28 28 30 30 30 32 32 34 34 34 36 36 36
[35] 36 38 38 38 40 40 40 40 40 44 46 48 48 48 48 50
[[2]]
[1] 8 8 14 14 16 18 20 20 20 22 22 24 24 24 24 26 26
[18] 26 26 28 28 28 28 30 30 30 32 32 34 34 34 36 36 36
[35] 36 38 38 38 40 40 40 40 40 44 46 48 48 48 48 50
lapply(car_list, '[', j = list(.N, max(dist)), by = speed)
# or
# lapply(car_list, '[', ,.(.N, max(dist)), speed)
[[1]]
speed N V2
1: 4 2 10
2: 7 2 22
3: 8 1 16
4: 9 1 10
5: 10 3 34
...
[[2]]
speed N V2
1: 4 2 10
2: 7 2 22
3: 8 1 16
4: 9 1 10
5: 10 3 34
...
这可与:=
运算符一起使用:
lapply(car_list, '[', , `:=` (more_speed = speed+5))
> car_list
[[1]]
speed dist more_speed
1: 4 2 9
2: 4 10 9
3: 7 4 12
4: 7 22 12
5: 8 16 13
...
[[2]]
speed dist more_speed
1: 4 2 9
2: 4 10 9
3: 7 4 12
4: 7 22 12
5: 8 16 13
答案 1 :(得分:4)
第一个基本R选项为substitute(...())
,后跟do.call
:
library(data.table)
cars1 = setDT(copy(cars))
cars2 = setDT(copy(cars))
cars2[, speed := sort(speed, decreasing = TRUE)]
car_list = list(cars1, cars2)
class(car_list) <- "dd"
`[.dd` <- function(x,...) {
a <- substitute(...()) #this is an alist
expr <- quote(x[[i]])
expr <- c(expr, a)
res <- list()
for (i in seq_along(x)) {
res[[i]] <- do.call(data.table:::`[.data.table`, expr)
}
res
}
all.equal(
car_list[,.N, by = speed],
list(cars1[,.N, by = speed], cars2[,.N, by = speed])
)
#[1] TRUE
all.equal(
car_list[, speed*2],
list(cars1[, speed*2], cars2[, speed*2])
)
#[1] TRUE
第二个基本R选项为match.call
,修改该调用,然后求值(您可以在lm
中找到此方法):
`[.dd` <- function(x,...) {
thecall <- match.call()
thecall[[1]] <- quote(`[`)
thecall[[2]] <- quote(x[[i]])
res <- list()
for (i in seq_along(x)) {
res[[i]] <- eval(thecall)
}
res
}
all.equal(
car_list[,.N, by = speed],
list(cars1[,.N, by = speed], cars2[,.N, by = speed])
)
#[1] TRUE
all.equal(
car_list[, speed*2],
list(cars1[, speed*2], cars2[, speed*2])
)
#[1] TRUE
如果您使用:=
,我还没有测试过这些方法是否可以复制深层副本。
答案 2 :(得分:3)
我的评论中的建议尚未完成。
您确实可以使用rlang
支持整洁的评估,
但是由于data.table
本身不直接支持它,
您最好使用表达式而不是定量,
并且您需要在调用eval_tidy
之前构建完整的最终表达式:
`[.dd` <- function(x, ...) {
code <- rlang::enexprs(...)
lapply(x, function(dt) {
ex <- rlang::expr(dt[!!!code])
rlang::eval_tidy(ex)
})
}
car_list[, .N, by = speed]
[[1]]
speed N
1: 4 2
2: 7 2
3: 8 1
4: 9 1
5: 10 3
6: 11 2
7: 12 4
8: 13 4
9: 14 4
10: 15 3
11: 16 2
12: 17 3
13: 18 4
14: 19 3
15: 20 5
16: 22 1
17: 23 1
18: 24 4
19: 25 1
[[2]]
speed N
1: 4 2
2: 7 2
3: 8 1
4: 9 1
5: 10 3
6: 11 2
7: 12 4
8: 13 4
9: 14 4
10: 15 3
11: 16 2
12: 17 3
13: 18 4
14: 19 3
15: 20 5
16: 22 1
17: 23 1
18: 24 4
19: 25 1