我正在尝试使用python的curve_fit库拟合我的数据。尽管我可以捕获数据模式,但实际拟合度很差。有什么方法可以改善合身质量吗?
这是我的代码:
import numpy as np
from scipy.optimize import curve_fit
from matplotlib import pyplot as plt
x=np.array([ 4.29977288, 4.18759576, 3.937875 , 3.68784896, 3.43711213,
3.19099287, 2.94166468, 2.68543877, 2.4289324 , 2.19035861,
1.93962193, 1.69285434, 1.44271633, 1.18869615, 0.94761142,
0.69828307, 0.44606364, 0.19355101, -0.05367106, -0.30303661,
-0.55272018, -0.79877747, -1.04806864, -1.29706657, -1.54567223,
-1.79685098, -2.05011095, -2.29874144, -2.54813208, -2.80178461,
-3.04828379, -3.29893363, -3.54727073, -3.79908534, -4.04661293]);
y=np.array([ 20.8744534 , 20.89824536, 20.3763843 , 19.79924837,
19.19485964, 18.57716717, 17.93772371, 17.28834168,
16.62367817, 15.94336213, 15.24389099, 14.52471466,
13.7787734 , 13.00299723, 12.18721413, 11.31510566,
10.36672642, 9.32224105, 8.14237084, 6.78034367,
5.19700447, 3.32945537, 1.10437136, -1.48805508,
-4.25695201, -6.94906329, -9.41648974, -11.54747381,
-13.33444597, -14.90663076, -16.36783375, -17.72241553,
-18.9592222 , -20.06703821, -21.07669491])
def func(x,A,B,C):
a=1+B/A
b=1-B/A
k=C/np.log(a/b)
y=A*np.tanh((x-C)/(2*k))
return y
A_0=25
B_0=10
C_0=1.2
popt,pcov = curve_fit(func,x,y,p0=[A_0,B_0,C_0])
print(pcov)
plt.plot(x,y,label='Data')
plt.plot(x,func(x, *popt),'.',label='Fit')
plt.legend()
plt.show()
答案 0 :(得分:2)
这不是curve_fit
的问题,而是您正在使用的功能的问题。找到一个能胜任工作的功能并不总是那么容易,但是例如,一个错误功能会做得更好:
import numpy as np
from scipy import special
from scipy.optimize import curve_fit
from matplotlib import pyplot as plt
x=np.array([ 4.29977288, 4.18759576, 3.937875 , 3.68784896, 3.43711213,
3.19099287, 2.94166468, 2.68543877, 2.4289324 , 2.19035861,
1.93962193, 1.69285434, 1.44271633, 1.18869615, 0.94761142,
0.69828307, 0.44606364, 0.19355101, -0.05367106, -0.30303661,
-0.55272018, -0.79877747, -1.04806864, -1.29706657, -1.54567223,
-1.79685098, -2.05011095, -2.29874144, -2.54813208, -2.80178461,
-3.04828379, -3.29893363, -3.54727073, -3.79908534, -4.04661293]);
y=np.array([ 20.8744534 , 20.89824536, 20.3763843 , 19.79924837,
19.19485964, 18.57716717, 17.93772371, 17.28834168,
16.62367817, 15.94336213, 15.24389099, 14.52471466,
13.7787734 , 13.00299723, 12.18721413, 11.31510566,
10.36672642, 9.32224105, 8.14237084, 6.78034367,
5.19700447, 3.32945537, 1.10437136, -1.48805508,
-4.25695201, -6.94906329, -9.41648974, -11.54747381,
-13.33444597, -14.90663076, -16.36783375, -17.72241553,
-18.9592222 , -20.06703821, -21.07669491])
def func(x,A,B,C):
a=1+B/A
b=1-B/A
k=C/np.log(a/b)
y=A*np.tanh((x-C)/(2*k))
return y
def erf(x, a, b, c, d):
return d + 0.5*c*(1 + special.erf(a*(x-b)))
A_0=25
B_0=10
C_0=1.2
popt,pcov = curve_fit(func,x,y,p0=[A_0,B_0,C_0])
perf, pecov = curve_fit(erf, x, y, p0=(0.5,0,40,-20))
plt.plot(x,y, 'o', label='Data')
plt.plot(x,func(x, *popt),'-',label='Fit')
plt.plot(x, erf(x, *perf), '--', label='erf fit')
plt.legend()
plt.show()
答案 1 :(得分:2)
我不确定您是否一定要使用所使用的函数,还是可以使用多项式。在后一种情况下,您可以使用polyfit
。
请记住,您不能只使用任何高阶多项式,否则最终会过度拟合数据。您可以查看拟合的均方根误差,以评估其准确性
fit = np.poly1d(np.polyfit(x, y, 5))
plt.plot(x, y, '.', label='Data')
plt.plot(x, fit(x), label='Fit')
plt.legend()
答案 2 :(得分:0)