在熊猫数据框上执行复杂搜索的最快方法

时间:2019-05-28 14:07:24

标签: python pandas binary-search-tree

我正在尝试找出对熊猫数据框执行搜索和排序的最快方法。以下是我要完成的数据框前后。

之前:

flightTo  flightFrom  toNum  fromNum  toCode  fromCode
   ABC       DEF       123     456     8000    8000
   DEF       XYZ       456     893     9999    9999
   AAA       BBB       473     917     5555    5555
   BBB       CCC       917     341     5555    5555

搜索/排序后:

flightTo  flightFrom  toNum  fromNum  toCode  fromCode
   ABC       XYZ       123     893     8000    9999
   AAA       CCC       473     341     5555    5555

在此示例中,我实质上是在尝试过滤掉最终目的地之间存在的“航班”。应该使用某种类型的dropplicate方法完成此操作,但让我感到困惑的是如何处理所有列。二进制搜索将是实现此目标的最佳方法吗?提示表示赞赏,并努力找出答案。

可能的边缘情况:

如果数据被交换并且我们的终端连接在同一列怎么办?

flight1  flight2      1Num    2Num     1Code   2Code
   ABC       DEF       123     456     8000    8000
   XYZ       DEF       893     456     9999    9999

搜索/排序后:

flight1  flight2      1Num    2Num     1Code   2Code
   ABC       XYZ       123     893     8000    9999

从逻辑上讲这种情况不应该发生。毕竟您怎么能去DEF-ABC和DEF-XYZ?您不能,但是“端点”仍然是ABC-XYZ

2 个答案:

答案 0 :(得分:12)

这是网络问题,因此我们使用networkx,请注意,这里您可以停靠两个以上,这意味着您可以遇到类似NY-DC-WA-NC的情况

import networkx as nx
G=nx.from_pandas_edgelist(df, 'flightTo', 'flightFrom')

# create the nx object from pandas dataframe

l=list(nx.connected_components(G))

# then we get the list of components which as tied to each other , 
# in a net work graph , they are linked 
L=[dict.fromkeys(y,x) for x, y in enumerate(l)]

# then from the above we can create our map dict , 
# since every components connected to each other , 
# then we just need to pick of of them as key , then map with others

d={k: v for d in L for k, v in d.items()}

# create the dict for groupby , since we need _from as first item and _to as last item 
grouppd=dict(zip(df.columns.tolist(),['first','last']*3))
df.groupby(df.flightTo.map(d)).agg(grouppd) # then using agg with dict yield your output 

Out[22]: 
         flightTo flightFrom  toNum  fromNum  toCode  fromCode
flightTo                                                      
0             ABC        XYZ    123      893    8000      9999
1             AAA        CCC    473      341    5555      5555

安装networkx

  • pip install networkx
  • Anaconda conda install -c anaconda networkx

答案 1 :(得分:6)

这是一个NumPy解决方案,在性能相关的情况下可能会很方便:

def remove_middle_dest(df):
    x = df.to_numpy()
    # obtain a flat numpy array from both columns
    b = x[:,0:2].ravel()
    _, ix, inv = np.unique(b, return_index=True, return_inverse=True)
    # Index of duplicate values in b
    ixs_drop = np.setdiff1d(np.arange(len(b)), ix) 
    # Indices to be used to replace the content in the columns
    replace_at = (inv[:,None] == inv[ixs_drop]).argmax(0) 
    # Col index of where duplicate value is, 0 or 1
    col = (ixs_drop % 2) ^ 1
    # 2d array to index and replace values in the df
    # index to obtain values with which to replace
    keep_cols = np.broadcast_to([3,5],(len(col),2))
    ixs = np.concatenate([col[:,None], keep_cols], 1)
    # translate indices to row indices
    rows_drop, rows_replace = (ixs_drop // 2), (replace_at // 2)
    c = np.empty((len(col), 5), dtype=x.dtype)
    c[:,::2] = x[rows_drop[:,None], ixs]
    c[:,1::2] = x[rows_replace[:,None], [2,4]]
    # update dataframe and drop rows
    df.iloc[rows_replace, 1:] = c
    return df.drop(rows_drop)

所建议的数据帧可产生预期的输出:

print(df)
    flightTo flightFrom  toNum  fromNum  toCode  fromCode
0      ABC        DEF    123      456    8000      8000
1      DEF        XYZ    456      893    9999      9999
2      AAA        BBB    473      917    5555      5555
3      BBB        CCC    917      341    5555      5555

remove_middle_dest(df)

    flightTo flightFrom  toNum  fromNum  toCode  fromCode
0      ABC        XYZ    123      893    8000      9999
2      AAA        CCC    473      341    5555      5555

此方法不针对重复项所在的行假设任何特定顺序,并且对列也是如此(以覆盖问题中描述的边缘情况)。例如,如果我们使用以下数据框:

    flightTo flightFrom  toNum  fromNum  toCode  fromCode
0      ABC        DEF    123      456    8000      8000
1      XYZ        DEF    893      456    9999      9999
2      AAA        BBB    473      917    5555      5555
3      BBB        CCC    917      341    5555      5555

remove_middle_dest(df)

     flightTo flightFrom  toNum  fromNum  toCode  fromCode
0      ABC        XYZ    123      456    8000      9999
2      AAA        CCC    473      341    5555      5555