我试图创建一个熊猫数据帧,该数据帧迭代地从另一个数据帧中统计状态,它穿过列(用正则表达式过滤)。我如何创建结果数据框? 输入数据框:
In [4]: control.head()
Out[4]:
Patient Gender Age Left-Lateral-Ventricle_NVoxels Left-Inf-Lat-
Vent_NVoxels ... supramarginal_CurvInd_lh
0 P008 M 30 9414
311 ... 7.5
1 P013 F 35 7668
85 ... 10.4
2 P018 F 27 7350
202 ... 8.0
3 P033 F 55 7548
372 ... 9.2
4 P036 F 31 8598
48 ... 8.0
[5 rows x 930 columns]
我写了一个用于统计统计的代码,但坚持创建结果熊猫数据框
def select_volumes(group_c,group_k):
Select_list = ["Amygdala", "Hippocampus", "Lateral-Ventricle",
"Pallidum", "Putamen", "Thalamus"]
Side = ["Left", "Right"]
for s in Side:
for struct in Select_list:
volumes_c = group_c.filter(regex="^(?=.*"+s+")(?=.*"+struct+")
(?=.*Volume)")
volumes_k = group_k.filter(regex="^(?=.*"+s+")(?=.*"+struct+")
(?=.*Volume)")
k = cohens_d(volumes_c, volumes_k)
meand = volumes_c.mean()
result_df = pd.Dataframe(
{
"Cohen's norm": some result
"Mean Value": meand
}
)
return k
函数select_volumes给我结果:
Left-Amygdala_Volume_mm3 -0.29729
dtype: float64
Left-Hippocampus_Volume_mm3 0.33139
dtype: float64
Left-Lateral-Ventricle_Volume_mm3 -0.111853
dtype: float64
Left-Pallidum_Volume_mm3 0.28857
dtype: float64
Left-Putamen_Volume_mm3 0.696645
dtype: float64
Left-Thalamus-Proper_Volume_mm3 0.772492
dtype: float64
Right-Amygdala_Volume_mm3 -0.358333
dtype: float64
Right-Hippocampus_Volume_mm3 0.275668
dtype: float64
Right-Lateral-Ventricle_Volume_mm3 -0.092283
dtype: float64
Right-Pallidum_Volume_mm3 0.279258
dtype: float64
Right-Putamen_Volume_mm3 0.484879
dtype: float64
Right-Thalamus-Proper_Volume_mm3 0.809775
dtype: float64
我希望Left-Amygdala_Volume_mm3 ...是值为-0.29729且行名为Cohen's d的行作为每个Select_list的列: example, how dataframe should looks
答案 0 :(得分:0)
我仍然无法真正理解如何以及在何处,但是您证明了在函数的某个地方,您可以构建一个float64系列,其中包含例如Left-Amygdala_Volume_mm3
作为索引,-0.29729
作为值。而且我假设同时,对于相同的索引值,您拥有meand
的值。
更确切地说,我会假设:
k = pd.Series([-0.29729], dtype=np.float64,index=['Left-Amygdala_Volume_mm3'])
因为它打印为:
print(k)
Left-Amygdala_Volume_mm3 -0.29729
dtype: float64
同时,我假设meand
也是类似的系列。因此,我们将其访问值为meand.iloc[0]
(假设值为9174.1)
您应该将它们结合起来以构建一行的内容:
row = k.reset_index().iloc[0].tolist() + [meand.iloc[0]]
在示例中,我们有row
:['Left-Amygdala_Volume_mm3', -0.29729, 9174.1]
因此,您现在需要构建该行的大型列表:
def select_volumes(group_c,group_k):
Select_list = ["Amygdala", "Hippocampus", "Lateral-Ventricle",
"Pallidum", "Putamen", "Thalamus"]
Side = ["Left", "Right"]
data = []
for s in Side:
for struct in Select_list:
volumes_c = group_c.filter(regex="^(?=.*"+s+")(?=.*"+struct+")
(?=.*Volume)")
volumes_k = group_k.filter(regex="^(?=.*"+s+")(?=.*"+struct+")
(?=.*Volume)")
k = cohens_d(volumes_c, volumes_k)
meand = volumes_c.mean()
# build a row of result df
data.append(k.reset_index().iloc[0].tolist() + [meand.iloc[0]])
# after the loop combine the rows into a dataframe and return it:
result = pd.DataFrame(data, columns=['index', "Cohen's d", 'Mean']).set_index('index')
return result
答案 1 :(得分:0)
我在函数内写入pd.Dataframe:
k = cohens_d(volumes_c, volumes_k)
meand = volumes_c.mean()
volumes_df.append([cohen.index[0],cohen.values[0], meand)
return volumes_df
并从函数中调用pd.Dataframe:
finaldf=pd.DataFrame(select_volumes(control,patolog))
finaldf.columns=['Structure','Cohensd','Meand')