我正在寻找最快SQL MINUS (AKA EXCEPT) operator的惯用法。
这就是我的意思-给定两个Pandas DataFrame,如下所示:
In [77]: d1
Out[77]:
a b c
0 0 0 1
1 0 1 2
2 1 0 3
3 1 1 4
4 0 0 5
5 1 1 6
6 2 2 7
In [78]: d2
Out[78]:
a b c
0 1 1 10
1 0 0 11
2 1 1 12
如何仅考虑列d1 MINUS d2
和"a"
来查找"b"
的结果,以获得以下结果:
In [62]: res
Out[62]:
a b c
1 0 1 2
2 1 0 3
6 2 2 7
MVCE:
d1 = pd.DataFrame({
'a': [0, 0, 1, 1, 0, 1, 2],
'b': [0, 1, 0, 1, 0, 1, 2],
'c': [1, 2, 3, 4, 5, 6, 7]
})
d2 = pd.DataFrame({
'a': [1, 0, 1],
'b': [1, 0, 1],
'c': [10, 11, 12]
})
我尝试了什么:
In [65]: tmp1 = d1.reset_index().set_index(["a", "b"])
In [66]: idx = tmp1.index.difference(d2.set_index(["a","b"]).index)
In [67]: res = d1.loc[tmp1.loc[idx, "index"]]
In [68]: res
Out[68]:
a b c
1 0 1 2
2 1 0 3
6 2 2 7
它给了我正确的结果,但是我感觉必须有一种更惯用,更好/更干净的方法来实现这一目标。
PS DataFrame.isin()方法在这种情况下无济于事,因为它会产生错误的结果集
答案 0 :(得分:2)
使用merge
和indicator=True
的一种可能的解决方案:
df = (d1.reset_index()
.merge(d2, on=['a','b'], indicator=True, how='outer', suffixes=('','_'))
.query('_merge == "left_only"')
.set_index('index')
.rename_axis(None)
.reindex(d1.columns, axis=1))
print (df)
a b c
1 0 1 2
2 1 0 3
6 2 2 7
使用isin
的解决方案:
df = d1[~d1.set_index(["a", "b"]).index.isin(d2.set_index(["a","b"]).index)]
print (df)
a b c
1 0 1 2
2 1 0 3
6 2 2 7
答案 1 :(得分:2)
我在这里有点像excel:
d1[~d1[['a','b']].astype(str).sum(axis=1).isin(d2[['a','b']].astype(str).sum(axis=1))]
a b c
1 0 1 2
2 1 0 3
6 2 2 7
答案 2 :(得分:2)
In [100]: df1 = pd.concat([d1] * 10**5, ignore_index=True)
In [101]: df2 = pd.concat([d2] * 10**5, ignore_index=True)
In [102]: df1.shape
Out[102]: (700000, 3)
In [103]: df2.shape
Out[103]: (300000, 3)
pd.concat().drop_duplicates()
方法:In [10]: %%timeit
...: res = pd.concat([d1, pd.concat([d2]*2)]).drop_duplicates(['a', 'b'], keep=False)
...:
...:
2.59 ms ± 129 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [11]: %%timeit
...: res = df1[~df1.set_index(["a", "b"]).index.isin(df2.set_index(["a","b"]).index)]
...:
...:
484 ms ± 18.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [12]: %%timeit
...: tmp1 = df1.reset_index().set_index(["a", "b"])
...: idx = tmp1.index.difference(df2.set_index(["a","b"]).index)
...: res = df1.loc[tmp1.loc[idx, "index"]]
...:
...:
1.04 s ± 20.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
merge(how="outer")
方法-给我一个MemoryError
:In [106]: %%timeit
...: res = (df1.reset_index()
...: .merge(df2, on=['a','b'], indicator=True, how='outer', suffixes=('','_'))
...: .query('_merge == "left_only"')
...: .set_index('index')
...: .rename_axis(None)
...: .reindex(df1.columns, axis=1))
...:
...:
---------------------------------------------------------------------------
MemoryError Traceback (most recent call last)
In [13]: %%timeit
...: res = df1[~df1[['a','b']].astype(str).sum(axis=1).isin(df2[['a','b']].astype(str).sum(axis=1))]
...:
...:
2.05 s ± 65.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
答案 3 :(得分:1)
我们可以在此处将pandas.concat
与drop_duplicates
一起使用,并将其传递给参数,以使用keep=False
删除所有重复项:
pd.concat([d1, d2]).drop_duplicates(['a', 'b'], keep=False)
a b c
1 0 1 2
2 1 0 3
6 2 2 7
由OP评论后编辑
如果您要确保考虑到df2
中的唯一行,我们可以复制df
:
pd.concat([d1, pd.concat([d2]*2)]).drop_duplicates(['a', 'b'], keep=False)
a b c
1 0 1 2
2 1 0 3
6 2 2 7
答案 4 :(得分:-1)
我有类似的问题,我尝试过您的想法
(
In [65]: tmp1 = d1.reset_index().set_index(["a", "b"])
In [66]: idx = tmp1.index.difference(d2.set_index(["a","b"]).index)
In [67]: res = d1.loc[tmp1.loc[idx, "index"]]
)
进行测试,它有效。
但是,我在sqlite中使用的方式是,两个结构相同的数据库,这意味着其表和表的列是相同的,并且发生了一些错误,这表明这两个df似乎没有同样的形状。
如果您愿意帮助我并且想要更多详细信息,我们可以进行进一步的对话,非常感谢