我有一个来自hbase表的行键(如下所示的植物)集合,我想创建一个fetchData函数,该函数从集合中返回行键的rdd数据。目标是为植物集合中的每个元素从fetchData方法获取RDD的并集。我在下面给出了代码的相关部分。我的问题是,代码为fetchData的返回类型给出了编译错误:
println(“ PartB:” + hBaseRDD.getNumPartitions)
错误:值getNumPartitions不是Option [org.apache.spark.rdd.RDD [it.nerdammer.spark.test.sys.Record]]的成员
我正在使用Scala 2.11.8 spark 2.2.0和Maven编译
import it.nerdammer.spark.hbase._
import org.apache.spark.sql._
import org.apache.spark.sql.types.{StructType, StructField, StringType, IntegerType};
import org.apache.log4j.Level
import org.apache.log4j.Logger
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._
object sys {
case class systems( rowkey: String, iacp: Option[String], temp: Option[String])
val spark = SparkSession.builder().appName("myApp").config("spark.executor.cores",4).getOrCreate()
import spark.implicits._
type Record = (String, Option[String], Option[String])
def fetchData(plant: String): RDD[Record] = {
val start_index = plant
val end_index = plant + "z"
//The below command works fine if I run it in main function, but to get multiple rows from hbase, I am using it in a separate function
spark.sparkContext.hbaseTable[Record]("test_table").select("iacp","temp").inColumnFamily("pp").withStartRow(start_index).withStopRow(end_index)
}
def main(args: Array[String]) {
//the below elements in the collection are prefix of relevant rowkeys in hbase table ("test_table")
val plants = Vector("a8","cu","aw","fx")
val hBaseRDD = plants.map( pp => fetchData(pp))
println("Part: "+ hBaseRDD.getNumPartitions)
/*
rest of the code
*/
}
}
这是代码的有效版本。这里的问题是我正在使用for循环,我必须在每个循环中从HBase请求与行键(植物)向量相对应的数据,而不是先获取所有数据然后执行其余代码
import it.nerdammer.spark.hbase._
import org.apache.spark.sql._
import org.apache.spark.sql.types.{StructType, StructField, StringType, IntegerType};
import org.apache.log4j.Level
import org.apache.log4j.Logger
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._
object sys {
case class systems( rowkey: String, iacp: Option[String], temp: Option[String])
def main(args: Array[String]) {
val spark = SparkSession.builder().appName("myApp").config("spark.executor.cores",4).getOrCreate()
import spark.implicits._
type Record = (String, Option[String], Option[String])
val plants = Vector("a8","cu","aw","fx")
for (plant <- plants){
val start_index = plant
val end_index = plant + "z"
val hBaseRDD = spark.sparkContext.hbaseTable[Record]("test_table").select("iacp","temp").inColumnFamily("pp").withStartRow(start_index).withStopRow(end_index)
println("Part: "+ hBaseRDD.getNumPartitions)
/*
rest of the code
*/
}
}
}
尝试之后,这就是我现在遇到的问题。那么如何将类型转换为必填项。
scala> def fetchData(plant: String) = {
| val start_index = plant
| val end_index = plant + "~"
| val x1 = spark.sparkContext.hbaseTable[Record]("test_table").select("iacp","temp").inColumnFamily("pp").withStartRow(start_index).withStopRow(end_index)
| x1
| }
在REPL中定义功能并运行
scala> val hBaseRDD = plants.map( pp => fetchData(pp)).reduceOption(_ union _)
<console>:39: error: type mismatch;
found : org.apache.spark.rdd.RDD[(String, Option[String], Option[String])]
required: it.nerdammer.spark.hbase.HBaseReaderBuilder[(String, Option[String], Option[String])]
val hBaseRDD = plants.map( pp => fetchData(pp)).reduceOption(_ union _)
预先感谢!
答案 0 :(得分:3)
hBaseRDD
的类型为Vector[_]
,而不是RDD[_]
,因此您无法在其上执行方法getNumPartitions
。如果我理解正确,则希望合并获取的RDD。您可以通过plants.map( pp => fetchData(pp)).reduceOption(_ union _)
进行操作(我建议使用reduceOption
,因为它不会在空列表上失败,但是如果您确信列表不为空,则可以使用reduce
)>
另外,返回的fetchData
类型是RDD[U]
,但是我没有找到U
的任何定义。可能这就是编译器推断Vector[Nothing]
而不是Vector[RDD[Record]]
的原因。为了避免后续错误,您还应该将RDD[U]
更改为RDD[Record]
。