在数据框的某些列上使用groupby之后,随后使用apply测试另一列中是否存在字符串,pandas仅返回被分组的列以及使用apply创建的最后一列。是否可以返回与groupby和test相关的所有列?例如,按会话线程的唯一标识符进行分组,并测试字符串是否在另一列中存在,然后包括数据框中存在但属于特定组的其他一些列?
我尝试过使用groupby,然后使用apply申请匿名功能。
df.head()
shipment_id shipper_id courier_id Question sender
0 14 9962 228898 Let's get your furbabys home Apple pet transpo... courier
1 91919 190872 196838 Hi I'm kevin thims and I'm happy to do the job... courier
2 92187 191128 196838 Hi I'm kevin thims and I'm happy to do the job... shipper
unique_thread_indentifier = ['shipment_id', 'shipper_id', 'courier_id']
required_variables = ['shipment_id', 'shipper_id', 'courier_id', 'Question', 'sender']
df_new = (
df
.groupby(unique_thread_indentifier)[required_variables]
.apply(lambda group: 'shipper' in group['sender'].unique())
.to_frame(name='shipper_replied')
.reset_index()
)
df_new.head()
shipment_id shipper_id courier_id shipper_replied
0 14 9962 228898 False
1 91919 190872 196838 False
2 92187 191128 196838 True
我打算做的是在最终数据框中重新包含列Question
和sender
。预期输出如下:
shipment_id shipper_id courier_id Question sender shipper_replied
0 14 9962 228898 Let's get your furbabys home Apple pet transpo... courier False
1 91919 190872 196838 Hi I'm kevin thims and I'm happy to do the job... courier False
2 92187 191128 196838 Hi I'm kevin thims and I'm happy to do the job... shipper True
答案 0 :(得分:1)
我相信您需要GroupBy.transform
:
df['shipper_replied'] = (df.groupby(unique_thread_indentifier)['sender']
.transform(lambda group: 'shipper' in group.unique()))
print (df)
shipment_id shipper_id courier_id \
0 14 9962 228898
1 91919 190872 196838
2 92187 191128 196838
Question sender shipper_replied
0 Let's get your furbabys home Apple pet transpo. courier False
1 Hi I'm kevin thims and I'm happy to do the job courier False
2 Hi I'm kevin thims and I'm happy to do the job shipper True
另一种解决方案:
df['shipper_replied'] = (df.assign(new = df['sender'].eq('shipper'))
.groupby(unique_thread_indentifier)['new']
.transform('any'))
print (df)
shipment_id shipper_id courier_id \
0 14 9962 228898
1 91919 190872 196838
2 92187 191128 196838
Question sender shipper_replied
0 Let's get your furbabys home Apple pet transpo. courier False
1 Hi I'm kevin thims and I'm happy to do the job courier False
2 Hi I'm kevin thims and I'm happy to do the job shipper True