计算数据框中每个列值的订单百分比

时间:2019-04-12 23:20:45

标签: python pandas

我的数据是这样的:

d = {
    'date' : ['2011-01-01', '2011-01-15', '2011-08-14', '2012-01-01', '2012-06-06', '2013-01-01', '2013-02-01','2013-03-01','2013-04-01', '2013-08-25']
    ,'year' : ['2011','2011','2011','2012','2012','2013','2013','2013','2013', '2013']

}

df = pd.DataFrame(d)

df['date'] = pd.to_datetime(df['date'])
df.sort_values('date', inplace= True)

    date    year
0   2011-01-01  2011
1   2011-01-15  2011
2   2011-08-14  2011
3   2012-01-01  2012
4   2012-06-06  2012
5   2013-01-01  2013

我如何为每年创建一个订单百分比,一年的第一次出现是0.0,而最后一个出现是1.0?

输出必须是这样的:

date            year    percent
0   2011-01-01  2011    0.00
1   2011-01-15  2011    0.50
2   2011-08-14  2011    1.00
3   2012-01-01  2012    0.00
4   2012-06-06  2012    1.00
5   2013-01-01  2013    0.00
6   2013-02-01  2013    0.25
7   2013-03-01  2013    0.50
8   2013-04-01  2013    0.75
9   2013-08-25  2013    1.00

我能够通过每年创建几个单独的数据帧并进行apply的功能来实现这一点,在该功能中,我将每个索引除以len(serie),但是由于创建的数据帧数量众多,这似乎并不高效

1 个答案:

答案 0 :(得分:3)

您需要使用groupby并计算(1)cumcount和(2)size,然后将两者除。

grp = df.groupby('year')   
df['percent'] = grp.cumcount() / (grp['year'].transform('size') - 1)
df   

        date  year  percent
0 2011-01-01  2011     0.00
1 2011-01-15  2011     0.50
2 2011-08-14  2011     1.00
3 2012-01-01  2012     0.00
4 2012-06-06  2012     1.00
5 2013-01-01  2013     0.00
6 2013-02-01  2013     0.25
7 2013-03-01  2013     0.50
8 2013-04-01  2013     0.75
9 2013-08-25  2013     1.00