此代码有效:
library(plyr)
x <- data.frame(V= c("X", "Y", "X", "Y", "Z" ), Z = 1:5)
ddply(x, .(V), function(df) sum(df$Z),.parallel=FALSE)
虽然此代码失败:
library(doSMP)
workers <- startWorkers(2)
registerDoSMP(workers)
x <- data.frame(V= c("X", "Y", "X", "Y", "Z" ), Z = 1:5)
ddply(x, .(V), function(df) sum(df$Z),.parallel=TRUE)
stopWorkers(workers)
>Error in do.ply(i) : task 3 failed - "subscript out of bounds"
In addition: Warning messages:
1: <anonymous>: ... may be used in an incorrect context: ‘.fun(piece, ...)’
2: <anonymous>: ... may be used in an incorrect context: ‘.fun(piece, ...)’
我使用的是R 2.1.12,plyr 1.4和doSMP 1.0-1。有没有人想出办法解决这个问题?
编辑:回应安德里,这是一个进一步的例证:
system.time(ddply(x, .(V), function(df) Sys.sleep(1), .parallel=FALSE)) #1
system.time(ddply(x, .(V), function(df) Sys.sleep(1), .parallel=TRUE)) #2
library(doSMP)
workers <- startWorkers(2)
registerDoSMP(workers)
x <- data.frame(V= c("X", "Y", "X", "Y", "Z" ), Z = 1:5)
system.time(ddply(x, .(V), function(df) Sys.sleep(1), .parallel=FALSE)) #3
system.time(ddply(x, .(V), function(df) Sys.sleep(1), .parallel=TRUE)) #4
stopWorkers(workers)
前三个功能起作用,但它们都需要大约3秒钟。函数#2发出警告,没有注册并行后端,因此顺序执行。函数#4给出了我在原帖中引用的相同错误。
/ edit:curioser and curiouser:在我的Mac上,以下工作:
library(plyr)
library(doMC)
registerDoMC()
x <- data.frame(V= c("X", "Y", "X", "Y", "Z" ), Z = 1:5)
ddply(x, .(V), function(df) sum(df$Z),.parallel=TRUE)
但这失败了:
library(plyr)
library(doSMP)
workers <- startWorkers(2)
registerDoSMP(workers)
x <- data.frame(V= c("X", "Y", "X", "Y", "Z" ), Z = 1:5)
ddply(x, .(V), function(df) sum(df$Z),.parallel=TRUE)
stopWorkers(workers)
这也失败了:
library(plyr)
library(snow)
library(doSNOW)
cl <- makeCluster(2, type = "SOCK")
registerDoSNOW(cl)
x <- data.frame(V= c("X", "Y", "X", "Y", "Z" ), Z = 1:5)
ddply(x, .(V), function(df) sum(df$Z),.parallel=TRUE)
stopCluster(cl)
所以我认为foreach的各种平行后端是不可互换的。
答案 0 :(得分:4)
虽然@hadley已经很好地回答了这个问题,但我想补充说,我认为plyr现在适用于其他foreach并行后端。这是博客条目的link,其中包含plyr与doSNOW结合使用的示例:
答案 1 :(得分:2)
为了确认@ LeeZamparo的回答,plyr
现在似乎与snow
一起使用,至少在Windows 7上使用R版本2.15.0。问题中的最后一块代码可以使用,虽然有神秘的警告:
library(plyr)
library(snow)
library(doSNOW)
cl <- makeCluster(2, type = "SOCK")
registerDoSNOW(cl)
x <- data.frame(V= c("X", "Y", "X", "Y", "Z" ), Z = 1:5)
library(microbenchmark)
mb <- microbenchmark(
PP <- ddply(x, .(V), function(df) sum(df$Z),.parallel=TRUE),
NP <- ddply(x, .(V), function(df) sum(df$Z),.parallel=FALSE)
)
stopCluster(cl)
隐秘警告:
> warnings()
Warning messages:
1: <anonymous>: ... may be used in an incorrect context: ‘.fun(piece, ...
这不是很快,我猜这是开销......
> mb
Unit: milliseconds
expr
1 NP <- ddply(x, .(V), function(df) sum(df$Z), .parallel = FALSE)
2 PP <- ddply(x, .(V), function(df) sum(df$Z), .parallel = TRUE)
min lq median uq max
1 11.91518 15.74567 20.10944 23.30453 38.09237
2 314.58008 336.81160 348.42421 358.57337 575.11220
检查它是否给出预期结果
> PP
V V1
1 X 4
2 Y 6
3 Z 5
有关此会话的更多详细信息:
> sessionInfo()
R version 2.15.0 (2012-03-30)
Platform: i386-pc-mingw32/i386 (32-bit)
locale:
[1] LC_COLLATE=English_Australia.1252 LC_CTYPE=English_Australia.1252
[3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C
[5] LC_TIME=English_Australia.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] microbenchmark_1.1-3 doSNOW_1.0.6 iterators_1.0.6
[4] foreach_1.4.0 plyr_1.7.1 snow_0.3-10
loaded via a namespace (and not attached):
[1] codetools_0.2-8 compiler_2.15.0 tools_2.15.0
答案 2 :(得分:1)
事实证明plyr only works with doMC,但开发人员正在研究它。