当我尝试执行以下操作时,会发生上述错误:
se = tf.Session()
cont = tf.constant([[1., 2., 4., 5.], [5., 2., 7., 8.]])
def f1():
print(se.run(tf.shape(cont)))
return True
def f2():
return False
r = tf.cond(tf.greater(tf.constant(10), tf.constant(9)), f1, f2)
完整的错误日志如下:
Traceback (most recent call last):
File "/usr/lib/python3/dist-packages/IPython/core/interactiveshell.py", line 2882, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-44-ca1189c6f7a2>", line 7, in <module>
r = tf.cond(tf.greater(tf.constant(10), tf.constant(9)), f1, f2)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/util/deprecation.py", line 488, in new_func
return func(*args, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/control_flow_ops.py", line 2086, in cond
orig_res_t, res_t = context_t.BuildCondBranch(true_fn)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/control_flow_ops.py", line 1930, in BuildCondBranch
original_result = fn()
File "<ipython-input-44-ca1189c6f7a2>", line 3, in f1
print(se.run(tf.shape(cont)))
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py", line 929, in run
run_metadata_ptr)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py", line 1137, in _run
self._graph, fetches, feed_dict_tensor, feed_handles=feed_handles)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py", line 484, in __init__
self._assert_fetchable(graph, fetch.op)
File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/client/session.py", line 497, in _assert_fetchable
'Operation %r has been marked as not fetchable.' % op.name)
并不是cont
无法访问变量f1()
,因为以下命令可以正确执行:
cont = tf.constant([[1., 2., 4., 5.], [5., 2., 7., 8.]])
def f1():
print(se.run((cont)))
return True
def f2():
return False
r = tf.cond(tf.greater(tf.constant(10), tf.constant(9)), f1, f2)
输出:
[[1. 2. 4. 5.]
[5. 2. 7. 8.]]
有人可以建议为什么发生这种情况,并且如何纠正它?
答案 0 :(得分:0)
您看到的错误已说明here
请在说明中注意这一行。
请记住,传递给tf.cond()或tf.while_loop()的所有函数必须是纯函数,因此它们不得修改其环境。
import tensorflow as tf
se = tf.Session()
cont = tf.constant([[1., 2., 4., 5.], [5., 2., 7., 8.]])
def f1():
print('Shape is ',tf.shape(cont))
return True
def f2():
return False
r = tf.cond(tf.greater(tf.constant(10), tf.constant(9)), f1, f2)
此代码执行没有错误。
如果您对静态和动态形状感到困惑,this会很好地解释它。