在R中的glmnet中提取非零系数

时间:2019-03-04 13:42:29

标签: r machine-learning glmnet lasso

我正在进行套索逻辑回归。我使用cv.glmnet来获取非零系数。它似乎有效,即我确实获得了一些非零系数,其余系数变为零。但是,当我使用coef函数打印所有系数时,会给我所有系数的列表。有没有一种方法可以提取不为零的系数及其名称。 我所做的代码是:

cv.lasso = cv.glmnet(x_train,y_train, alpha = 0.6, family = "binomial")
coef(cv.lasso, s=cv.lasso$lambda.1se)

当我使用coef时,我得到以下输出:

4797 x 1 sparse Matrix of class "dgCMatrix"

                  1

(Intercept)   -1.845702

sampleid.10    .       
sampleid.1008  .  

我想提取非零系数的名称和值。我该怎么办?

2 个答案:

答案 0 :(得分:1)

一种非常方便的方法是使用coefplot软件包的extract.coef函数。

这是一个简单的可重现示例,根据cv.glmnet文档改编而成:

library(glmnet)
library(coefplot)

set.seed(1010)
n=1000;p=100
nzc=trunc(p/10)
x=matrix(rnorm(n*p),n,p)
beta=rnorm(nzc)
fx= x[,seq(nzc)] %*% beta
eps=rnorm(n)*5
y=drop(fx+eps)
px=exp(fx)
px=px/(1+px)
ly=rbinom(n=length(px),prob=px,size=1)
set.seed(1011)

# model:
cvob1=cv.glmnet(x,y)

这里x有100个变量,从V1到V100;其中哪个系数非零?

extract.coef(cvob1)
# result:
                  Value SE Coefficient
(Intercept) -0.11291017 NA (Intercept)
V1          -0.41095526 NA          V1
V2           0.50127803 NA          V2
V4          -0.40319404 NA          V4
V5          -0.42518885 NA          V5
V6           0.42609526 NA          V6
V7           0.41845873 NA          V7
V8          -1.54881117 NA          V8
V9           1.23284876 NA          V9
V10          0.31187777 NA         V10
V14         -0.03085618 NA         V14
V18         -0.15211282 NA         V18
V26          0.19704039 NA         V26
V30         -0.11568702 NA         V30
V31         -0.07108829 NA         V31
V36          0.15282509 NA         V36
V39          0.10250912 NA         V39
V47         -0.02602025 NA         V47
V60          0.04502238 NA         V60
V63         -0.07051392 NA         V63
V68          0.06431373 NA         V68
V75         -0.35798561 NA         V75

答案 1 :(得分:0)

您可以使用矩阵符号。

library(MASS)
library(glmnet)
set.seed(8675309)
### simulate covariates from inepedent normals
xx <- mvrnorm(100, rep(0, 100), diag(1, 100))
### simulate coefficients first 50 from beta second 50 0 => spurious features
my_beta <- c(runif(50, -2, 2), rep(0, 50))
## simulate responses
yy <- rbinom(100, 1, plogis(xx %*% my_beta))

## do your glmnet
reg <- cv.glmnet(x = xx, y = yy, alpha  = 0.5, family = 'binomial')


rownames(coef(reg, s = 'lambda.min'))[coef(reg, s = 'lambda.min')[,1]!= 0] ### returns nonzero coefs