下面是神经网络的softmax激活函数。此函数的导数是什么?
def softmax(z):
e = np.exp(z)
return e / np.sum(e, axis=1)
答案 0 :(得分:1)
softmax导数的迭代版本
import numpy as np
def softmax_grad(s):
# Take the derivative of softmax element w.r.t the each logit which is usually Wi * X
# input s is softmax value of the original input x.
# s.shape = (1, n)
# i.e. s = np.array([0.3, 0.7]), x = np.array([0, 1])
# initialize the 2-D jacobian matrix.
jacobian_m = np.diag(s)
for i in range(len(jacobian_m)):
for j in range(len(jacobian_m)):
if i == j:
jacobian_m[i][j] = s[i] * (1-s[i])
else:
jacobian_m[i][j] = -s[i]*s[j]
return jacobian_m
矢量化版本
def softmax_grad(softmax):
# Reshape the 1-d softmax to 2-d so that np.dot will do the matrix multiplication
s = softmax.reshape(-1,1)
return np.diagflat(s) - np.dot(s, s.T)