我不知道如何将列表中最相似的最上面(#1)个文档映射回原始列表中的每个文档项。
我经历了一些预处理,ngram,词形化和TF IDF。然后,我使用Scikit的线性内核。我尝试使用提取功能,但不确定如何在csr矩阵中使用它...
import string, nltk
from sklearn.feature_extraction.text import TfidfVectorizer
from nltk.stem import WordNetLemmatizer
from sklearn.metrics.pairwise import cosine_similarity
import sparse_dot_topn.sparse_dot_topn as ct
import re
documents = 'the cat in the hat','the catty ate the hat','the cat wants the cats hat'
def ngrams(string, n=2):
string = re.sub(r'[,-./]|\sBD',r'', string)
ngrams = zip(*[string[i:] for i in range(n)])
return [''.join(ngram) for ngram in ngrams]
lemmer = nltk.stem.WordNetLemmatizer()
def LemTokens(tokens):
return [lemmer.lemmatize(token) for token in tokens]
remove_punct_dict = dict((ord(punct), None) for punct in string.punctuation)
def LemNormalize(text):
return LemTokens(nltk.word_tokenize(text.lower().translate(remove_punct_dict)))
TfidfVec = TfidfVectorizer(tokenizer=LemNormalize, analyzer=ngrams, stop_words='english')
tfidf_matrix = TfidfVec.fit_transform(documents)
from sklearn.metrics.pairwise import linear_kernel
cosine_similarities = linear_kernel(tfidf_matrix[0:1], tfidf_matrix).flatten()
related_docs_indices = cosine_similarities.argsort()[:-5:-1]
cosine_similarities
我当前的示例仅使我对所有文档的第一行。如何获得在数据框中看起来像这样的输出(请注意原始文档来自数据框)。
original df col most similar doc similarity%
'the cat in the hat' 'the catty ate the hat' 80%
'the catty ate the hat' 'the cat in the hat' 80%
'the cat wants the cats hat' 'the catty ate the hat' 20%
答案 0 :(得分:1)
import pandas as pd
df = pd.DataFrame(columns=["original df col", "most similar doc", "similarity%"])
for i in range(len(documents)):
cosine_similarities = linear_kernel(tfidf_matrix[i:i+1], tfidf_matrix).flatten()
# make pairs of (index, similarity)
cosine_similarities = list(enumerate(cosine_similarities))
# delete the cosine similarity with itself
cosine_similarities.pop(i)
# get the tuple with max similarity
most_similar, similarity = max(cosine_similarities, key=lambda t:t[1])
df.loc[len(df)] = [documents[i], documents[most_similar], similarity]
结果:
original df col most similar doc similarity%
0 the cat in the hat the catty ate the hat 0.664119
1 the catty ate the hat the cat in the hat 0.664119
2 the cat wants the cats hat the cat in the hat 0.577967