StreamingQueryException:文本数据源仅支持单列

时间:2019-02-13 06:35:28

标签: apache-spark spark-structured-streaming

我知道这个问题已经被问过多次了,但是对我来说,答案都没有帮助。

下面是我的火花代码

class ParseLogs extends java.io.Serializable {    
def formLogLine(logLine: String): (String,String,String,Int,String,String,String,Int,Float,String,String,Flo at,Int,String,Int,Float,String)={

//some logic

//return value
(recordKey._2.toString().replace("\"", ""),recordKey._3,recordKey._4,recordKey._5,recordKey._6,recordKey._8,sbcId,recordKey._10,recordKey._11,recordKey._12,recordKey._13.trim(),LogTransferTime,contentAccessed,OTT,dataTypeId,recordKey._14,logCaptureTime1)

}
}


 val inputDf = spark.readStream
  .format("kafka")
  .option("kafka.bootstrap.servers", brokers)
  .option("subscribe", topic)
  .option("startingOffsets", "earliest")
  .load()
  val myDf = inputDf.selectExpr("CAST(value AS STRING)")

  val df1 = myDf.map(line =>  new ParseLogs().formLogLine(line.get(0).toString()))

我遇到错误

User class threw exception: org.apache.spark.sql.streaming.StreamingQueryException: Text data source supports only a single column, and you have 17 columns.;

1 个答案:

答案 0 :(得分:1)

使用UDF将logLine转换为所需的内容。例如:

    spark.sqlContext.udf.register("YOURLOGIC", (logLine: String) => {
    //some logic
    (recordKey._2.toString().replace("\"",""),recordKey._3,recordKey._4,recordKey._5,recordKey._6,recordKey._8,sbcId,recordKey._10,recordKey._11,recordKey._12,recordKey._13.trim(),LogTransferTime,contentAccessed,OTT,dataTypeId,recordKey._14,logCaptureTime1)
    })
    val inputDf = spark.readStream
      .format("kafka")
      .option("kafka.bootstrap.servers", brokers)
      .option("subscribe", topic)
      .option("startingOffsets", "earliest")
      .load()
    val myDf = inputDf.selectExpr("CAST(value AS STRING)")
    val df1 = myDf.selectExpr("YOURLOGIC(value) as result")
    val result = df1.select(
    df1("result").getItem(0),
    df1("result").getItem(1),
    df1("result").getItem(2)),
    df1("result").getItem(3)),
    ...if you have 17 item,then add to 17
    df1("result").getItem(17))