我正在建立一个仪表板来绘制图形,并有机会通过单击图形上的点并使用插值来更改数据来排除异常值。
此仪表板的主要思想是使不使用Python的人可以更快更轻松地准备数据。此破折号还将用于简单的数据可视化(某种形式的BI手工制作)。并且在所有迭代之后,一个包含清晰数据的新文件将被写入.csv且没有异常值。
为此我遇到了两个问题:
有用于数据解析的代码块:
def parse_contents(contents, filename, date):
content_type, content_string = contents.split(',')
decoded = base64.b64decode(content_string)
try:
if 'csv' in filename:
# Assume that the user uploaded a CSV file
df = pd.read_csv(io.StringIO(decoded.decode('cp1251')), sep = ';' )
elif 'tsv' in filename:
# Assume that the user uploaded a TSV file
df = pd.read_csv(io.StringIO(decoded.decode('utf-8')), sep = '\t')
elif 'xls' in filename:
# Assume that the user uploaded an excel file
df = pd.read_excel(io.BytesIO(decoded))
elif 'xlsx' in filename:
# Assume that the user uploaded a new excel file
df = pd.read_excel(io.BytesIO(decoded))
except Exception as e:
print(e)
return html.Div([
'There was an error processing this file.'
])
return html.Div([
html.H5(filename),
html.H6(datetime.datetime.fromtimestamp(date)),
dash_table.DataTable(
data = df.to_dict('rows'),
columns = [{'name': i, 'id': i} for i in df.columns]),
html.Hr(), # horizontal line
# For debugging, display the raw contents provided by the web browser
html.Div('Raw Content'),
html.Pre(contents[0:10] + '...', style = {
'whiteSpace': 'pre-wrap',
'wordBreak': 'break-all'
})
])
和输入框的回调函数:
@dashboard.callback(
Output('output-data-upload', 'children'),
[Input('upload-data', 'contents')],
[State('upload-data', 'filename'),
State('upload-data', 'last_modified')])
def update_output(list_of_contents, list_of_names, list_of_dates):
if list_of_contents is not None:
children = [parse_contents(c, n, d) for c, n, d in zip(list_of_contents, list_of_names, list_of_dates)]
return children
这部分代码是从官方文档中摘录的。 可以查看上载的数据非常有趣,但是我想使用这些列中的列名和日期来绘制与在Pandas中执行的相同的方式。
要选择列名,我创建了两个下拉组件:
#Create dropdown for X-axis
html.Div([
dcc.Dropdown(
id = 'xaxis-column',
options = [{'label': i, 'value': i} for i in df.columns],
value = 'Xdate')],
style = {'width': '48%', 'display': 'inline-block'}),
#Create dropdown for Y-axis
html.Div([
dcc.Dropdown(
id = 'yaxis-column',
options = [{'label': i, 'value': i} for i in df.columns],
value = 'Yval')],
style = {'width': '48%', 'float': 'right', 'display': 'inline-block'})
图形的代码部分:
dcc.Graph(id = 'graph')
@dashboard.callback(
Output('graph', 'figure'),
[Input('xaxis-column', 'value'),
Input('yaxis-column', 'value'),
Input('xaxis-type', 'value'),
Input('yaxis-type', 'value'),
Input('XYeardate--slider', 'value')])
def update_graph(xaxis_column_name, yaxis_column_name,
xaxis_type, yaxis_type, Year_value):
dff = df[df['XYeardate'] == Year_value]
return {
'data': [go.Scatter(
x = dff[dff['Xval'] == xaxis_column_name]['Xdate'],
y = dff[dff['Xval'] == yaxis_column_name]['Yval'],
text = dff[dff['Xval'] == yaxis_column_name]['ID'],
mode = 'markers',
marker = {
'size': 10, #was 'size': 15
'opacity': 0.5,
'line': {'width': 0.5, 'color': 'white'}})],
'layout': go.Layout(
xaxis = {
'title': xaxis_column_name,
'type': 'linear' if xaxis_type == 'Linear'},
yaxis = {
'title': yaxis_column_name,
'type': 'linear' if yaxis_type == 'Linear'},
margin = {'l': 40, 'b': 40, 't': 10, 'r': 0},
hovermode = 'closest')}
如果需要,我可以在注释中添加代码的其他部分。
任何评论将不胜感激!