我有这些梯度下降算法可用于多元回归,但它提出了一个
ValueError: operands could not be broadcast together with shapes (3,) (3,140).
我检查了关于stackoverflow上的广播错误的其他答案,并且该文档指出矩阵的尺寸必须相同或任一矩阵都必须为1。但是如何使我的theta的尺寸相同。
请不标记复制它。
我的x的亮度为(140,3),y的亮度为(140,1),alpha = 0.0001
def find_mse(x,y,theta):
return np.sum(np.square(np.matmul(x,theta)-y))*1/len(x)
def gradientDescent(x,y,theta,alpha,iteration):
theta=np.zeros(x.shape[1])
m=len(x)
gradient_df=pd.DataFrame(columns=['coeffs','mse'])
for i in range(iteration):
gradient = (1/m) * np.matmul(x.T, np.matmul(x, theta) - y)
theta = np.mat(theta) - alpha * gradient
cost = compute_cost(X, y, theta)
gradient_df.loc[i] = [theta,cost]
return gradient_df
答案 0 :(得分:0)
您正在将 public bool CheckDuplicate3()
{
DbConnection connection = null;
try
{
connection = GetFactory().CreateConnection();
if (connection != null)
{
connection.ConnectionString = "user id=XXXX;password=XXXX;data source=XXXX";
connection.Open();
using (DbCommand command = connection.CreateCommand())
{
command.CommandText = "mca_test_package.checkDuplicate";
command.CommandType = CommandType.StoredProcedure;
command.AddParameter("o_result", DbType.Decimal, 0, ParameterDirection.ReturnValue);
command.AddParameter("i_vendor", DbType.String, tx.Vendor);
command.AddParameter("i_transactionnumber", DbType.String, tx.TransactionNumber.Trim());
command.AddParameter("i_txId", DbType.Binary, tx.Id.ToByteArray(), ParameterDirection.Input, 16);
command.ExecuteNonQuery();
var result = Convert.ToInt32(command.Parameters["o_result"].Value);
if (result == 1)
{
tx.status = "Success";
Console.WriteLine("No Duplicate {0}", tx);
}
else
{
Console.WriteLine("Duplicate {0}", tx);
tx.status = "RejectedDuplicate";
}
}
using (DbCommand command = connection.CreateCommand())
{
command.CommandType = CommandType.Text;
command.CommandText = "update test_tx_log tx set tx.status = :status where id = :id";
command.AddParameter("status", DbType.String, tx.status);
//command.AddParameter("id", DbType.Decimal, tx.Id);
command.AddParameter("id", DbType.Binary, tx.Id.ToByteArray());
command.ExecuteNonQuery();
}
}
return true;
}
finally
{
if (connection != null)
connection.Close();
}
}
与形状x
乘以(140, 3)
以产生应具有形状theta
的输出。为此,您的(140, 1)
的形状应为theta
。您需要按照以下步骤初始化(3, 1)
theta