我正在使用pytorch训练神经网络。当我在GPU上进行训练和测试时,它可以正常工作。 但是当我尝试使用以下方法在CPU上加载模型参数时:
net.load_state_dict(torch.load('rnn_x_epoch.net'))
我收到以下错误:
RuntimeError: cuda runtime error (35) : CUDA driver version is insufficient for CUDA runtime version at torch/csrc/cuda/Module.cpp:51
我搜索了错误,主要是由于CUDA驱动程序依赖性,但是由于我在出现此错误时正在CPU上运行,因此它一定是其他错误,或者可能是我遗漏了某些错误。 由于使用GPU可以正常工作,因此我可以在GPU上运行它,但是我试图在GPU上训练网络,存储参数,然后将其加载到CPU模式以进行预测。 我只是在寻找一种在CPU模式下加载参数的方法。
我也尝试过此操作来加载参数:
check = torch.load('rnn_x_epoch.net')
它不起作用。
我试图以两种方式保存模型参数,以查看其中任何一种都行得通,但没有成功: 1)
checkpoint = {'n_hidden': net.n_hidden,
'n_layers': net.n_layers,
'state_dict': net.state_dict(),
'tokens': net.chars}
with open('rnn_x_epoch.net', 'wb') as f:
torch.save(checkpoint, f)
2)
torch.save(model.state_dict(), 'rnn_x_epoch.net')
TraceBack:
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-9-e61f28013b35> in <module>()
----> 1 net.load_state_dict(torch.load('rnn_x_epoch.net'))
/opt/conda/lib/python3.6/site-packages/torch/serialization.py in load(f, map_location, pickle_module)
301 f = open(f, 'rb')
302 try:
--> 303 return _load(f, map_location, pickle_module)
304 finally:
305 if new_fd:
/opt/conda/lib/python3.6/site-packages/torch/serialization.py in _load(f, map_location, pickle_module)
467 unpickler = pickle_module.Unpickler(f)
468 unpickler.persistent_load = persistent_load
--> 469 result = unpickler.load()
470
471 deserialized_storage_keys = pickle_module.load(f)
/opt/conda/lib/python3.6/site-packages/torch/serialization.py in persistent_load(saved_id)
435 if root_key not in deserialized_objects:
436 deserialized_objects[root_key] = restore_location(
--> 437 data_type(size), location)
438 storage = deserialized_objects[root_key]
439 if view_metadata is not None:
/opt/conda/lib/python3.6/site-packages/torch/serialization.py in default_restore_location(storage, location)
86 def default_restore_location(storage, location):
87 for _, _, fn in _package_registry:
---> 88 result = fn(storage, location)
89 if result is not None:
90 return result
/opt/conda/lib/python3.6/site-packages/torch/serialization.py in _cuda_deserialize(obj, location)
68 if location.startswith('cuda'):
69 device = max(int(location[5:]), 0)
---> 70 return obj.cuda(device)
71
72
/opt/conda/lib/python3.6/site-packages/torch/_utils.py in _cuda(self, device, non_blocking, **kwargs)
66 if device is None:
67 device = -1
---> 68 with torch.cuda.device(device):
69 if self.is_sparse:
70 new_type = getattr(torch.cuda.sparse,
self.__class__.__name__)
/opt/conda/lib/python3.6/site-packages/torch/cuda/__init__.py in __enter__(self)
223 if self.idx is -1:
224 return
--> 225 self.prev_idx = torch._C._cuda_getDevice()
226 if self.prev_idx != self.idx:
227 torch._C._cuda_setDevice(self.idx)
RuntimeError: cuda runtime error (35) : CUDA driver version is insufficient for CUDA runtime version at torch/csrc/cuda/Module.cpp:51
也可能是Pytorch中的保存/加载操作仅适用于GPU模式,但我对此并不十分确信。
答案 0 :(得分:1)
从PyTorch documentation:
在包含GPU张量的文件上调用
torch.load()
时,这些张量将默认加载到GPU。
要将模型加载到保存在GPU上的CPU上,您需要将map_location
参数作为cpu
传递给load
函数,如下所示:
# Load all tensors onto the CPU
net.load_state_dict(torch.load('rnn_x_epoch.net', map_location=torch.device('cpu')))
这样做,使用map_location
参数将张量下面的存储动态地重新映射到CPU设备。您可以在官方PyTorch tutorials上阅读更多内容。
这也可以如下进行:
# Load all tensors onto the CPU, using a function
net.load_state_dict(torch.load('rnn_x_epoch.net', map_location=lambda storage, loc: storage))