在spark结构流之上执行spark SQL时遇到一些问题。 PFA错误。
这是我的代码
object sparkSqlIntegration {
def main(args: Array[String]) {
val spark = SparkSession
.builder
.appName("StructuredStreaming")
.master("local[*]")
.config("spark.sql.warehouse.dir", "file:///C:/temp") // Necessary to work around a Windows bug in Spark 2.0.0; omit if you're not on Windows.
.config("spark.sql.streaming.checkpointLocation", "file:///C:/checkpoint")
.getOrCreate()
setupLogging()
val userSchema = new StructType().add("name", "string").add("age", "integer")
// Create a stream of text files dumped into the logs directory
val rawData = spark.readStream.option("sep", ",").schema(userSchema).csv("file:///C:/Users/R/Documents/spark-poc-centri/csvFolder")
// Must import spark.implicits for conversion to DataSet to work!
import spark.implicits._
rawData.createOrReplaceTempView("updates")
val sqlResult= spark.sql("select * from updates")
println("sql results here")
sqlResult.show()
println("Otheres")
val query = rawData.writeStream.outputMode("append").format("console").start()
// Keep going until we're stopped.
query.awaitTermination()
spark.stop()
}
}
在执行过程中,出现以下错误。由于我是流媒体新手,谁能告诉我如何在Spark结构化流媒体上执行Spark SQL查询
2018-12-27 16:02:40 INFO BlockManager:54 - Initialized BlockManager: BlockManagerId(driver, LAPTOP-5IHPFLOD, 6829, None)
2018-12-27 16:02:41 INFO ContextHandler:781 - Started o.s.j.s.ServletContextHandler@6731787b{/metrics/json,null,AVAILABLE,@Spark}
sql results here
Exception in thread "main" org.apache.spark.sql.AnalysisException: Queries with streaming sources must be executed with writeStream.start();;
FileSource[file:///C:/Users/R/Documents/spark-poc-centri/csvFolder]
at org.apache.spark.sql.catalyst.analysis.UnsupportedOperationChecker$.org$apache$spark$sql$catalyst$analysis$UnsupportedOperationChecker$$throwError(UnsupportedOperationChecker.scala:374)
at org.apache.spark.sql.catalyst.analysis.UnsupportedOperationChecker$$anonfun$checkForBatch$1.apply(UnsupportedOperationChecker.scala:37)
at org.apache.spark.sql.catalyst.analysis.UnsupportedOperationChecker$$anonfun$checkForBatch$1.apply(UnsupportedOperationChecker.scala:35)
at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:127)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$foreachUp$1.apply(TreeNode.scala:126)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$foreachUp$1.apply(TreeNode.scala:126)
at scala.collection.immutable.List.foreach(List.scala:392)
答案 0 :(得分:0)
您不需要这些行
import spark.implicits._
rawData.createOrReplaceTempView("updates")
val sqlResult= spark.sql("select * from updates")
println("sql results here")
sqlResult.show()
println("Otheres")
最重要的是,不需要select *
。当您打印数据框时,您将已经看到所有列。因此,您也不需要注册临时视图即可为其命名。
当您format("console")
时,就不需要.show()
Refer to the Spark examples,用于从网络套接字读取并输出到控制台。
val words = // omitted ... some Streaming DataFrame
// Generating a running word count
val wordCounts = words.groupBy("value").count()
// Start running the query that prints the running counts to the console
val query = wordCounts.writeStream
.outputMode("complete")
.format("console")
.start()
query.awaitTermination()
带走-使用.select()
和.groupBy()
之类的DataFrame操作,而不是原始SQL
或者您可以使用Spark Streaming,as shown in those examples,需要对每个流批次进行foreachRDD
,然后将其转换为DataFrame,以便查询
/** Case class for converting RDD to DataFrame */
case class Record(word: String)
val words = // omitted ... some DStream
// Convert RDDs of the words DStream to DataFrame and run SQL query
words.foreachRDD { (rdd: RDD[String], time: Time) =>
// Get the singleton instance of SparkSession
val spark = SparkSessionSingleton.getInstance(rdd.sparkContext.getConf)
import spark.implicits._
// Convert RDD[String] to RDD[case class] to DataFrame
val wordsDataFrame = rdd.map(w => Record(w)).toDF()
// Creates a temporary view using the DataFrame
wordsDataFrame.createOrReplaceTempView("words")
// Do word count on table using SQL and print it
val wordCountsDataFrame =
spark.sql("select word, count(*) as total from words group by word")
println(s"========= $time =========")
wordCountsDataFrame.show()
}
ssc.start()
ssc.awaitTermination()