我如何改善分离良好的对分解的实现

时间:2018-12-21 19:58:15

标签: java tree octree

我试图使用WSPD来实现3D分离良好的对分解octree的算法。

首先,我将实现类OctreeNode,如下所示

public class OctreeNode {

public static final int BSW = 0;
public static final int BSE = 1;
public static final int BNW = 2;
public static final int BNE = 3;
public static final int ASW = 4;
public static final int ASE = 5;
public static final int ANW = 6;
public static final int ANE = 7;

public int level = 0; // level set to 0.
public OctreeNode[] children = null;
public OctreeNode father = null; // father is null
public Point_3 p = null; //point stored in a leaf
public Point_3 center = null; // point to define the center of the box of the node.
public double height = 0.0, width = 0.0, depth = 0.0;

每个非叶节点都有8个子节点。我为该类实现了一个构造函数,该构造函数采用3D点列表。

/**
 * Create the octree for storing an input point cloud.
 */
public OctreeNode(List<Point_3> points) {
    // We construct the octree only for non empty point cloud.
    assert(points.size() > 0);
    /**
     * We start by computing a box containing the point cloud.
     */
    // The minimum value of x,y,z in the point cloud.
    double minX = points.get(0).getX().doubleValue();
    double minY = points.get(0).getY().doubleValue();
    double minZ = points.get(0).getZ().doubleValue();

    // The maximum value of x,y,z in the point cloud.
    double maxX = points.get(0).getX().doubleValue();
    double maxY = points.get(0).getY().doubleValue();
    double maxZ = points.get(0).getZ().doubleValue();


    for(Point_3 point : points) {

        // update the minimum.
        if(minX > point.getX().doubleValue()) {
            minX = point.getX().doubleValue();
        }

        // update the minimum.
        if(minY > point.getY().doubleValue()) {
            minY = point.getY().doubleValue();
        }

        // update the minimum.
        if(minZ > point.getZ().doubleValue()) {
            minZ = point.getZ().doubleValue();
        }

        // update the maximum.
        if(maxX < point.getX().doubleValue()) {
            maxX = point.getX().doubleValue();
        }

        // update the maximum.
        if(maxY < point.getY().doubleValue()) {
            maxY = point.getY().doubleValue();
        }

        // update the maximum.
        if(maxZ < point.getZ().doubleValue()) {
            maxZ = point.getZ().doubleValue();
        }
    }

    this.center = new Point_3((minX + maxX) / 2, (minY + maxY) / 2, (minZ + maxZ) / 2);
    this.width = 0.75*(maxX - minX);
    this.height = 0.75*(maxY - minY);
    this.depth = 0.75*(maxZ - minZ);

    for(Point_3 point : points) {
        this.add(point);
    }

}

之后,我实现类的添加功能

/**
 * @return true if the current node is a leaf.
 */
public boolean isLeaf() {
    return (this.children == null);
}
/**
 * @return true if the current node is empty.
 */
public boolean isEmpty() {
    return (this.children == null && this.p == null);
}

/**
 * @return true if the current node is single point.
 */
public boolean isSinglePoint() {
    return (this.children == null && this.p != null);
}

/**
 * @param o an Object.
 * @return true if the current node is equals to o
 */
@Override
public boolean equals(Object o) {
    OctreeNode n = (OctreeNode) o;
    return (n != null) && (this.center.equals(n.center));
}

/**
 * @return the diameter of the node : 0 if is empty or single point and the diameter of the box otherwise.
 */
public double diam() {
    if(this.isLeaf()) {
        return 0.0;
    }
    return 2*Math.sqrt(this.width*this.width
                                            + this.height*this.height
                                            + this.depth*this.depth);
}
/**
 * Check if the point is in the boundary of the OctreeNode
 * @param p a Point_3.
 * @return true if p is in the cube of the OctreeNode
 */
public boolean inBoundary(Point_3 p) {
    Vector_3 v = (Vector_3) this.center.minus(p);
    return (Math.abs(v.getX().doubleValue()) <= this.width && Math.abs(v.getY().doubleValue()) <= this.height && Math.abs(v.getZ().doubleValue()) <= this.depth);
}
/**
 * Add a node into the OctreeNode
 */

public void add(Point_3 p) {
    assert(this.center != null);
    if(!this.inBoundary(p))
        return;
    // Check if the current node is a leaf.
    if(this.isLeaf()) {
        // Check if the current node is empty.
        if(this.isEmpty()) {
            this.p = p;
            return;
        }
        else {
            // Check if the node contains the same point already.
            if(this.p.equals(p)) {
                return;
            }
            // The current node contains only one point and the new point
            // is different from the point of the current OctreeNode.
            // We create the set of children for the current OctreeNode.
            this.children = new OctreeNode[8];

            // Initialize the children.
            for(int i = 0; i < 8; i++) {
                this.children[i] = new OctreeNode();
            }

            // For all children we put the current OctreeNode as father and
            // we increment the level.
            for(OctreeNode child : this.children) {
                child.father = this;
                child.level = this.level + 1;
            }

            // We compute then the center points for every child

            Vector_3 vi = new Vector_3(this.width / 2, 0.0, 0.0);
            Vector_3 vj = new Vector_3(0.0, this.height / 2, 0.0);
            Vector_3 vk = new Vector_3(0.0, 0.0, this.depth / 2);

            this.children[BSW].center = this.center.sum(vk.opposite()).sum(vj.opposite()).sum(vi.opposite());
            this.children[BSE].center = this.center.sum(vk.opposite()).sum(vj.opposite()).sum(vi);
            this.children[BNW].center = this.center.sum(vk.opposite()).sum(vj).sum(vi.opposite());
            this.children[BNE].center = this.center.sum(vk.opposite()).sum(vj).sum(vi);
            this.children[ASW].center = this.center.sum(vk).sum(vj.opposite()).sum(vi.opposite());
            this.children[ASE].center = this.center.sum(vk).sum(vj.opposite()).sum(vi);
            this.children[ANW].center = this.center.sum(vk).sum(vj).sum(vi.opposite());
            this.children[ANE].center = this.center.sum(vk).sum(vj).sum(vi);

            // We put half of the dimensions of the cube for every child.
            for(OctreeNode child : children) {
                child.width = this.width / 2;
                child.depth = this.depth / 2;
                child.height = this.height / 2;
            }

            // Look for the child to add the point of the current OctreeNode.
            for(OctreeNode child : children) {
                if(child.inBoundary(this.p)) {
                    child.add(this.p);
                    break;
                }
            }

            // Look for the child to add the point p.
            for(OctreeNode child : children) {
                if(child.inBoundary(p)) {
                    child.add(p);
                    break;
                }
            }
            // this.p = null;
        }
    }
    else {

        // Look for the child to add the point p.
        for(OctreeNode child : children) {
            if(child.inBoundary(p)) {
                child.add(p);
                break;
            }
        }
    }
}

我还实现了一个函数距离,以计算Octree中两个节点之间的距离,即节点两个框之间的距离。

/**
 * @param o an OctreeNode.
 * @param u an OctreeNode.
 * @return the distance between the two nodes.
 */
public static double distance(OctreeNode o, OctreeNode u) {
    if(o == null || o.isEmpty() || u == null || u.isEmpty()) {
        return 0.0;
    }
    if(u.isLeaf() && o.isLeaf()) {
            return u.p.distanceFrom(o.p).doubleValue();
    }
    double x = 0.0;
    double y = 0.0;
    double z = 0.0;
    Vector_3 v;
    if(u.isLeaf()) {
        v = (Vector_3) u.p.minus(o.center);
        x = Math.min(Math.abs(v.getX().doubleValue()) - o.width, 0.0);
        y = Math.min(Math.abs(v.getX().doubleValue()) - o.height, 0.0);
        z = Math.min(Math.abs(v.getX().doubleValue()) - o.depth, 0.0);
        return Math.sqrt(x*x + y*y + z*z);
    }
    if(o.isLeaf()) {
        return distance(u, o);
    }
    v = (Vector_3) u.center.minus(o.center);
    x = Math.min(Math.abs(v.getX().doubleValue()) - o.width - u.width, 0.0);
    y = Math.min(Math.abs(v.getX().doubleValue()) - o.height - u.height, 0.0);
    z = Math.min(Math.abs(v.getX().doubleValue()) - o.depth - u.depth, 0.0);
    return Math.sqrt(x*x + y*y + z*z);
}
}

现在,我实现了Octree表示和Octree类

public class Octree {
public OctreeNode root;

/**
 * Create an octree from the array points.
 */
public Octree(Point_3[] points){
    /**
     * We use the constructor provided by the class OctreeNode to
     * construct the root.
     */
    this.root = new OctreeNode(Arrays.asList(points));
}
}

我在这里有个问题。您是否认为实施是最好的方法?

这部分之后,我实现了分离良好的对分解类

public class WellSeparatedPairDecomposition {
class Pair<X,Y> {
X x; Y y;
Pair(X xx, Y yy) {
  x = xx;
  y = yy;
}
public X getFirst() {
  return x;
}
public Y getSecond() {
  return y;
}

@Override
public boolean equals(Object o) {
  Pair<X,Y> p = (Pair<X,Y>) o;
  return (p!=null && p.getFirst() == x && p.getSecond() == y);
}
}
/**
* Compute the WSPD from an octree and a threshold s.
* @param T the Octree,
* @param s threshold.
* @return the pairs of WSPD.
*/
public OctreeNode[][] wspd (Octree T, double epsilon) {
   Set<Pair<OctreeNode, OctreeNode>> H = new HashSet<Pair<OctreeNode, OctreeNode>>();

   wspd(T.root, T.root, epsilon, H);

   int n = H.size();
   OctreeNode[][] result = new OctreeNode[n][2];
   int i = 0;
   for(Pair<OctreeNode, OctreeNode> pair : H) {
     result[i][0] = pair.getFirst();
     result[i][1] = pair.getSecond();
     i++;
   }
   return result;
   }

   boolean isWS(OctreeNode u, OctreeNode v, double epsilon) {
      if(u == null || v == null || u.isEmpty() || v.isEmpty()) {
         return false;
   }
   double distance = OctreeNode.distance(u, v);
   return (u.diam() < epsilon*distance && v.diam() < epsilon*distance);
   }

void wspd(OctreeNode u, OctreeNode v, double epsilon, Set<Pair<OctreeNode, OctreeNode>> H) {
if(u.isEmpty() || v.isEmpty() || (v.isLeaf() && u.isLeaf() && v.equals(u)))
  return;
if(isWS(u, v, epsilon)) {
  H.add(new Pair<OctreeNode, OctreeNode>(u, v));
  return;
}
if(u.level > v.level) {
  OctreeNode temp = u;
  u = v;
  v = temp;
}
if(!u.isLeaf()) {
  for(OctreeNode uchild : u.children) {
    wspd(uchild, v, epsilon, H);
  }
}
}
}

我的实现与算法的描述完全相同。但是,当我测试时它非常慢。我该如何改善这种实现?

0 个答案:

没有答案