我有一列,每行都有ID列表。我需要能够搜索ID,并输出包含ID的行。我在下面提供了示例数据。
我需要能够在搜索中输入一个或多个ID。我已经尝试了下面的代码,但在该问题的末尾得到了错误提示。
buyers[buyers['customer_list'].str.contains('48184' )]
buyers[buyers['customer_list'].str.contains('48184', '55684')]
数据
df = pd.DataFrame({'A':[[48184, 48184, 64970, 64970], [55684, 72990, 72990, 85673], [55684, 72990, 72990, 85673], [64247, 60131, 60131, 60131], [64544, 64544, 64544, 64544]]})
错误
KeyError Traceback (most recent call last)
<ipython-input-42-3229146c6a64> in <module>()
----> 1 buyers[buyers['customer_list2'].str.contains( '48184' )]
/opt/conda/lib/python3.6/site-packages/pandas/core/frame.py in __getitem__(self, key)
2680 if isinstance(key, (Series, np.ndarray, Index, list)):
2681 # either boolean or fancy integer index
-> 2682 return self._getitem_array(key)
2683 elif isinstance(key, DataFrame):
2684 return self._getitem_frame(key)
/opt/conda/lib/python3.6/site-packages/pandas/core/frame.py in _getitem_array(self, key)
2724 return self._take(indexer, axis=0)
2725 else:
-> 2726 indexer = self.loc._convert_to_indexer(key, axis=1)
2727 return self._take(indexer, axis=1)
2728
/opt/conda/lib/python3.6/site-packages/pandas/core/indexing.py in _convert_to_indexer(self, obj, axis, is_setter)
1325 if mask.any():
1326 raise KeyError('{mask} not in index'
-> 1327 .format(mask=objarr[mask]))
1328
1329 return com._values_from_object(indexer)
KeyError: '[nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan\n nan nan nan nan nan nan] not in index'
答案 0 :(得分:2)
使用数据框构造函数和isin
+ any
pd.DataFrame(df.A.tolist()).isin([48184,55684]).any(1)
Out[29]:
0 True
1 True
2 True
3 False
4 False
dtype: bool
答案 1 :(得分:0)
您可以将apply与lambda函数一起使用:
searchValue = input('ID Search: ')
mask = df['A'].apply(lambda x: int(searchValue) in x)
print(df[mask])
ID Search: 72990
A
1 [55684, 72990, 72990, 85673]
2 [55684, 72990, 72990, 85673]
如果要从输入中搜索多个值:
searchValue = input('ID Search: ') # input numbers
nums = [int(n) for n in searchValue.split(',')] # list comprehension to int n for n in the input values separated by comma
mask = df['A'].apply(lambda x: any(elem in x for elem in nums)) # create a mask for any elem in nums and in x which is each row
print(df[mask])
ID Search: 72990,48184
A
0 [48184, 48184, 64970, 64970]
1 [55684, 72990, 72990, 85673]
2 [55684, 72990, 72990, 85673]