答案 0 :(得分:1)
您可以这样做:
import pandas as pd
from itertools import combinations
THRESHOLD = 8.0
def valuation_formula(row):
l = [sorted(x) for x in combinations(row, r=2) if sum(x) > THRESHOLD]
if(len(l) == 0):
row["smaller"], row["larger"] = None, None
else:
row["smaller"], row["larger"] = l[0] # since not specified by OP, we take the first such pair
return row
contribution_df = df.apply(lambda row: valuation_formula(row), axis=1)
那么,如果
df = pd.DataFrame({"a" : [1.0, 2.0, 4.0], "b" : [5.0, 6.0, 7.0]})
a b
0 1.0 5.0
1 2.0 6.0
2 4.0 7.0
然后,contribution_df
是
a b smaller larger
0 1.0 5.0 NaN NaN
1 2.0 6.0 NaN NaN
2 4.0 7.0 4.0 7.0
HTH。