使用gabor内核提取垂直线会产生黑色图像

时间:2018-10-04 09:06:18

标签: python opencv filtering

我了解gabor内核的概念以及如何将其用于识别方向边缘。所以我想用它来识别图像中的条形码行。

但是,当我使用gabor内核过滤图像时,总是得到空白/黑色结果。您能否提供有关我需要做些什么的反馈,以使Gabor识别图像中的垂直线,即产生垂直边缘处具有白色的结果?

输入图像: enter image description here

结果: enter image description here

import cv2
import numpy as np  

def deginrad(degree):
    radiant = 2*np.pi/360 * degree
    return radiant

def main():
    src = cv2.imread('./images/barcode1.jpg', cv2.IMREAD_GRAYSCALE)

    # Introduce consistency in width
    const_width = 300
    aspect = float(src.shape[0]) / float(src.shape[1])
    src = cv2.resize(src, (const_width, int(const_width * aspect)))

    src = cv2.GaussianBlur(src, (7,7), 0)

    # Apply gabor kernel to identify vertical edges
    g_kernel = cv2.getGaborKernel((9,9), 8, deginrad(0), 5, 0.5, 0, ktype=cv2.CV_32F)
    gabor = cv2.filter2D(src, cv2.CV_8UC3, g_kernel)

    # Visual the gabor kernel
    h, w = g_kernel.shape[:2]
    g_kernel = cv2.resize(g_kernel, (20*w, 20*h), interpolation=cv2.INTER_CUBIC)

    cv2.imshow('src', src)
    cv2.imshow('gabor', gabor)  # gabor is just black
    cv2.imshow('gabor kernel', g_kernel)
    cv2.waitKey(0)

if __name__ == "__main__":
    main()

1 个答案:

答案 0 :(得分:1)

您需要使用参数才能正确查看它。参数如下-

cv2.getGaborKernel(ksize, sigma, theta, lambda, gamma, psi, ktype)

使用

g_kernel = cv2.getGaborKernel((31,31), 4, deginrad(0), 5, 0.5, 0, ktype=cv2.CV_32F)

结果是-

enter image description here