在Pytorch中,您可以轻松地更新张量,如下所示:
for i in range(x_len):
tensor_abc[:, i, i] = 0
我们如何更新张量流编码中的张量? 我尝试了tf.assign,无法执行切片更新。 尝试过tf.scatter_update,效果不佳...
答案 0 :(得分:0)
此答案仅与变量有关。
import tensorflow as tf
sess = tf.InteractiveSession()
v = tf.zeros((5,5,5))
var = tf.Variable(initial_value=v)
init = tf.variables_initializer([var])
sess.run(init)
var = var[ 1 : 2 ,
1 : 2 ,
1 : 2 ].assign(tf.ones((1,1,1)))
print(sess.run(var))
这产生
[[[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]]
[[0. 0. 0. 0. 0.]
[0. 1. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]]
[[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]]
[[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]]
[[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]]]
还有这个
var = var[ 1 : 2 ,
0 : 1 ,
0 : 1 ].assign(tf.ones((1,1,1)))
产生
[[[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]]
[[1. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]]
....
....]]
另一个例子是
var = var[ 1 : 2 ,
: 2 ,
: 2 ].assign(tf.ones((1,2,2)))
[[[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]]
[[1. 1. 0. 0. 0.]
[1. 1. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]
[0. 0. 0. 0. 0.]]
....
....]]
您应该探索tf.scatter_nd的张量。
答案 1 :(得分:-1)
tf.Variable
是唯一可以更新的张量(https://www.tensorflow.org/guide/variables)。对于变量,您将使用gather
和scatter_update
之类的代码进行切片。
请注意,其他张量不适合分配。如果您要这样做,我想知道为什么这样做是必要的。但是,仍然可以使用有点费解的代码来创建具有所需值的新张量(而不是就地分配)。例如,以下操作无效:
index = ... tensor = tf.constant([0,1,2,3,4])
tensor[i] = 0
## Doesn't work (TypeError: `Tensor` object does not support item assignment)
但这可以等效:
tensor = tf.constant([0,1,2,3,4])
tensor = tf.concat([tensor[:i], tf.zeros_like(tensor[i:i+1]), tensor[i+1:]], 0)
## This works, creates a new tensor
OR:
tensor = tf.constant([0,1,2,3,4])
tensor = tf.concat([tensor[:i], tf.fill([1], 0), tensor[i+1:]], 0)
## This works, creates a new tensor