我有以下技巧,将鼠标悬停在Ajax调用上并获取数据,创建内容并显示。但这不适用于动态内容,因为在页面上加载
<span class="more-tags otherPostTags" data-postId="{{$post->id}}">...</span>
在页面上变为静态,但在选项卡中也变为动态。
因此以下代码适用于静态
<span class="more-tags otherPostTags" data-postId="{{$post->id}}">...</span>
但不适用于动态。
<div id="template" style="display: none;">
Loading a new image...
</div>
<span class="more-tags otherPostTags" data-postId="{{$post->id}}">...</span>
Tippy jQuery:
const template = document.querySelector('#template');
const initialText = template.textContent;
const tip = tippy('.otherPostTags', {
animation: 'shift-toward',
arrow: true,
html: '#template',
onShow() {
const content = this.querySelector('.tippy-content')
if (tip.loading || content.innerHTML !== initialText) return
tip.loading = true
node = document.querySelectorAll('[data-tippy]');
let id = node[0].dataset.postid;
$.ajax({
url: '/get/post/'+id+'/tags',
type: 'GET',
success: function(res){
let preparedMarkup = '';
res.tags.map(function(item) {
preparedMarkup +=
'<span class="orange-tag" style="background-color: '+item.color+'">'+
item.name +
'</span>';
});
content.innerHTML = preparedMarkup;
tip.loading = false
},
error: function(error) {
console.log(error);
content.innerHTML = 'Loading failed';
tip.loading = false
},
});
},
onHidden() {
const content = this.querySelector('.tippy-content');
content.innerHTML = initialText;
},
popperOptions: {
modifiers: {
preventOverflow: {
enabled: false
},
hide: {
enabled: false
}
}
}
});
我在这里想念什么?
答案 0 :(得分:1)
如果您希望Tippy在新元素上激活,则需要使用事件委托。 Tippy documentation涵盖了这一点(令人沮丧的是,没有链接的锚点;搜索“事件委托”)。您使用父容器元素,然后告诉Tippy使用什么选择器来匹配子元素。文档中的示例为:
tippy('#parent', {
target: '.child'
})
...因此,在您的示例中,使用所有.otherPostTags
元素都位于的容器(在最坏的情况下为document.body
),并使用.otherPostTags
作为target
:
tippy('selectorForParentElement', {
target: '.otherPostTags'
});
实时示例:
tippy('#container', {
target: '.otherPostTags'
});
var counter = 0;
var timer = setInterval(function() {
++counter;
var tag = document.createElement("span");
tag.title = "Tip for span #" + counter;
tag.className = "otherPostTags";
tag.innerHTML = "Span #" + counter;
document.getElementById("container").appendChild(tag);
if (counter === 6) {
clearInterval(timer);
}
}, 250);
.otherPostTags {
color: white;
background-color: #2020FF;
border: 1px solid black;
padding: 2px;
margin-left: 2px;
margin-right: 2px;
border-radius: 4px;
}
<link href="https://cdnjs.cloudflare.com/ajax/libs/tippy.js/2.5.4/tippy.css" rel="stylesheet"/>
<div id="container"></div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/tippy.js/2.5.4/tippy.min.js"></script>
答案 1 :(得分:0)
这在newer Tippy Version中发生了变化。
您需要从tippy.js
导入import { delegate } from 'tippy.js';
方法:
target
比起在根元素上使用委托方法来初始化技巧性的工具提示,并通过delegate( '#root', {
target: '[data-tippy-content]'
} );
属性设置将具有实际工具提示的元素的选择器:
#root
请确保body
元素确实存在于您的应用中,或使用诸如data-tippy-content
之类的其他内容。然后确保为实际元素提供target
属性,或相应地更改import numpy
import numpy as np
import cv2
from pupil_apriltags import Detector
import mathutils
from google.colab.patches import cv2_imshow
numpy.set_printoptions(linewidth=500)
camera_matrix = numpy.array([[645.00185337, 0, 304.75823489], [0, 646.18621837, 253.75317465], [0, 0, 1]])
fx = camera_matrix[0][0]
fy = camera_matrix[1][1]
cx = camera_matrix[0][2]
cy = camera_matrix[1][2]
camera_intrinsics_vector = [fx, fy, cx, cy]
def rot_matrix_to_euler(R):
y_rot = numpy.arcsin(R[2][0])
x_rot = numpy.arccos(R[2][2]/numpy.cos(y_rot))
z_rot = numpy.arccos(R[0][0]/numpy.cos(y_rot))
y_rot_angle = y_rot *(180/numpy.pi)
x_rot_angle = x_rot *(180/numpy.pi)
z_rot_angle = z_rot *(180/numpy.pi)
return (x_rot_angle,y_rot_angle,z_rot_angle)
image = cv2.imread("apriltag.png")
bw_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
detector = Detector()
detections = detector.detect(bw_image, estimate_tag_pose=True, camera_params=camera_intrinsics_vector, tag_size=0.076)
for detection in detections:
center = detection.center.astype(numpy.int32)
cv2.circle(image, (center[0], center[1]), 3, (0, 255, 0), -1)
corners = detection.corners.astype(numpy.int32)
cv2.polylines(image, [corners], True, (0, 255, 0), thickness = 2)
orientation = numpy.array([50, 0, 0])
orientation = numpy.transpose(orientation)
# endpoint = numpy.matmul(detection.pose_R, orientation).astype(numpy.int32) * 20
orientation_line = numpy.matmul(detection.pose_R, orientation)
euler_angles = rot_matrix_to_euler(detection.pose_R)
# endpoint = numpy.array( [center[0] + int(orientation_line[0]), center[1] - int(orientation_line[1]) ] )
endpoint = numpy.array( [center[0] + int(numpy.cos(euler_angles[0]) * 100), center[1] - int(numpy.sin(euler_angles[0]) * 100) ] )
cv2.line(image, (center[0], center[1]), (endpoint[0], endpoint[1]), (0, 0, 255), 2)
# cv2.line(image, (center[0], center[1]), (center[0] + endpoint[0], center[1] + endpoint[1]), (0, 0, 255), 2)
# print(detection.pose_R.shape)
# print(detection.pose_t)
# print(orientation.shape)
# print( numpy.matmul(detection.pose_R, orientation) )
# print(rot_matrix_to_euler(detection.pose_R))
cv2_imshow( image )```
选择器。