我的Multiindex数据框的结构如下:
close high low open
index = (timestamp,key)
(2018-09-10 16:00:00, ask) 1.16023 1.16064 1.16007 1.16046
(2018-09-10 16:00:00, bid) 1.16009 1.16053 1.15992 1.16033
(2018-09-10 16:00:00, volume) 817.00000 817.00000 817.00000 817.00000
每个时间戳都有出价,要价和交易量的观察法。
我正在尝试通过计算相应的(bid + ask)/ 2,将“中间”观察值添加到索引的第二级(即[bid,ask,volume])。
我所需的数据框应如下所示
close high low open
index = (timestamp,key)
(2018-09-10 16:00:00, ask) 1.16023 1.16064 1.16007 1.16046
(2018-09-10 16:00:00, bid) 1.16009 1.16053 1.15992 1.16033
(2018-09-10 16:00:00, volume) 817.00000 817.00000 817.00000 817.00000
(2018-09-10 16:00:00, mid) 1.16016 1.16059 1.15999 1.1604
最有效的方法是什么?能做到这一点吗?
编辑:
打印出数据框的头部以更清楚地看到结构。
`bid_ask.head(5).to_dict()
Out[3]:
{'close': {(Timestamp('2018-09-10 16:00:00'), 'ask'): 1.1602300000000001,
(Timestamp('2018-09-10 16:00:00'), 'bid'): 1.1600900000000001,
(Timestamp('2018-09-10 16:00:00'), 'volume'): 817.0,
(Timestamp('2018-09-10 17:00:00'), 'ask'): 1.15977,
(Timestamp('2018-09-10 17:00:00'), 'bid'): 1.15968},
'high': {(Timestamp('2018-09-10 16:00:00'), 'ask'): 1.1606399999999999,
(Timestamp('2018-09-10 16:00:00'), 'bid'): 1.1605300000000001,
(Timestamp('2018-09-10 16:00:00'), 'volume'): 817.0,
(Timestamp('2018-09-10 17:00:00'), 'ask'): 1.16039,
(Timestamp('2018-09-10 17:00:00'), 'bid'): 1.16029},
'low': {(Timestamp('2018-09-10 16:00:00'), 'ask'): 1.1600699999999999,
(Timestamp('2018-09-10 16:00:00'), 'bid'): 1.1599200000000001,
(Timestamp('2018-09-10 16:00:00'), 'volume'): 817.0,
(Timestamp('2018-09-10 17:00:00'), 'ask'): 1.1596200000000001,
(Timestamp('2018-09-10 17:00:00'), 'bid'): 1.1595299999999999},
'open': {(Timestamp('2018-09-10 16:00:00'), 'ask'): 1.16046,
(Timestamp('2018-09-10 16:00:00'), 'bid'): 1.1603300000000001,
(Timestamp('2018-09-10 16:00:00'), 'volume'): 817.0,
(Timestamp('2018-09-10 17:00:00'), 'ask'): 1.1601900000000001,
(Timestamp('2018-09-10 17:00:00'), 'bid'): 1.1600999999999999}}
`
答案 0 :(得分:0)
我不确定您的DataFrame
的结构如何,但这是本质
df.loc[('2018-09-10 16:00:00', 'mid'), :] = [1.16016, 1.16059, 1.15999 , 1.1604]
您需要做的就是使用df.loc
并为MultiIndex
我猜我以为您的新MultiIndex
条目是('2018-09-10 16:00:00', 'mid')
In [353]: ref
Out[353]:
Names Values
idx2
1 one A 5
2 two B 10
In [354]: ref.loc[(3, 'three'), :] = ['C', 15]
In [355]: ref
Out[355]:
Names Values
idx2
1 one A 5.0
2 two B 10.0
3 three C 15.0