在线性回归中,我得到了成本和权重的NAN值

时间:2018-08-26 04:39:56

标签: python-3.x linear-regression

    import numpy as np
    def cost_function(X,Y,B):
       J = np.sum((X.T.dot(B)-Y) ** 2) / (2 * len(Y))
       return J
    def gradient_descent(X,Y,B,alpha,iterations): 
        cost_history = [0] * iterations    
        for iteration in range(iterations):  
            h = X.T.dot(B)
            loss = h - Y
            gradient = X.dot(loss) / len(Y)
            B = B + (alpha * gradient)
            cost = cost_function(X,Y,B)
            cost_history[iteration] = cost
        return B,cost_history

B-重量(2,1) X--输入(2,700) Y--输出(700,1) alpha--学习率(0.001) 迭代-3000 我正在使用成本函数来计算误差

0 个答案:

没有答案