我已经成功地使用CountVectorizer()
训练和测试了Logistic回归模型:
def train_model(classifier, feature_vector_train, label):
# fit the training dataset on the classifier
classifier.fit(feature_vector_train, label)
return classifier
def getPredictions (classifier, feature_vector_valid):
# predict the labels on validation dataset
predict = classifier.predict(feature_vector_valid)
return metrics.accuracy_score(predict, valid_y)
def createTrainingAndValidation(column):
global train_x, valid_x, train_y, valid_y
train_x, valid_x, train_y, valid_y = model_selection.train_test_split(finalDF[column], finalDF['DeedType1'])
def createCountVectorizer(column):
global xtrain_count, xvalid_count
# create a count vectorizer object
count_vect = CountVectorizer()
count_vect.fit(finalDF[column])
# transform the training and validation data using count vectorizer object
xtrain_count = count_vect.transform(train_x)
xvalid_count = count_vect.transform(valid_x)
createTrainingAndValidation('Test')
createCountVectorizer('Test')
classifier = train_model(linear_model.LogisticRegression(), xtrain_count, train_y, xvalid_count)
predictions = getPredictions(classifier, xvalid_count)
我正在使用一个名为finalDF
的DataFrame并带有所有带标签的文本。由于此模型的精度为0.68,因此我将在带有未知标签的DataFrame子集上对其进行测试。这没有包括在培训和测试阶段。我将训练好的模型保存为bestClassifier
。
现在我得到了未知文本的子集,并尝试执行以下操作:
count_vect = CountVectorizer()
count_vect.fit(unknownDf['Text'])
text = unknownDf['Text']
xvalid_count = count_vect.transform(text)
bestClassifier.predict(xvalid_count)
finalDF
有800行,而unknownDf
只有32行。我该如何纠正?
答案 0 :(得分:2)
我想我看到发生了什么事,在这段代码中:
def createCountVectorizer(column):
global xtrain_count, xvalid_count
# create a count vectorizer object
count_vect = CountVectorizer()
count_vect.fit(finalDF[column])
# transform the training and validation data using count vectorizer object
xtrain_count = count_vect.transform(train_x)
xvalid_count = count_vect.transform(valid_x)
您要声明CountVectorizer()
,先叫fit
,然后再叫transform
。您需要做的是,对CountVectorizer()
使用相同的transform
至unknownDf['Text']
。
执行此操作时:
count_vect = CountVectorizer()
count_vect.fit(unknownDf['Text'])
text = unknownDf['Text']
xvalid_count = count_vect.transform(text)
您正在创建一个全新的CountVectorizer()
,它将为unknownDf['Text']
创建一个新的单词包,当您应该做的是删除这两行时
count_vect = CountVectorizer()
count_vect.fit(unknownDf['Text'])
,然后让您CountVectorizer()
上FIT
上的现有finalDF[column]
用于transform
unknownDf['Text']
。
找到在声明为{{1}的CountVectorizer()
到createCountVectorizer(column)
count_vect
的{{1}}中使用transform
的方法。