Topsis-有关消极和积极属性的查询

时间:2018-08-18 13:38:19

标签: r math data-analysis ahp

在Topsis技术中,我们计算负理想解决方案和正理想解决方案,因此我们需要具有衡量影响的积极和消极属性(准则),但是如果模型中的属性仅具有积极影响会怎样?是否可以仅使用正属性来计算Topsis结果?如果是,那么如何计算相对部分。预先感谢

1 个答案:

答案 0 :(得分:0)

好问题。是的,您可以具有所有正面属性,甚至可以具有所有负面属性。因此,在评估替代方案时,您可能会遇到两种不同类型的属性:理想属性或不良属性。

作为决策者,您希望最大化期望的属性(有益的标准),并最小化不期望的属性(成本标准)。

TOPSIS由Hwang和Yoon * 1于1981年创建。该算法背后的中心思想是,最理想的解决方案是与理想解决方案最相似的解决方案,因此,假设的替代方案具有可能的最高期望属性和最低的可能理想属性,而与目标解决方案的相似性较小所谓的“反理想”解决方案,因此是一种假设的替代方法,它具有尽可能低的期望属性和最高可能的不期望属性。

相似性是用几何距离(称为欧几里得距离)建模的。* 2

This is how it looks the Euclidean distance

假设您已经建立了决策矩阵。这样您就知道了备选方案及其各自的标准和值。您已经确定了哪些属性是理想的和不良的。 (确保对矩阵进行归一化和加权)

TOPSIS的步骤是:

  1. 为IDEAL解决方案建模。
  2. 为ANIDE-IDEAL解决方案建模。
  3. 计算每个备选方案与理想解的欧几里得距离。 enter image description here

  4. 计算每个备选方案与反理想解决方案的欧几里得距离。 enter image description here

  5. 您必须计算相对于理想解的相对比。

公式如下:

Formula

因此,到反理想解的距离除以到理想解的距离再加上到反理想解的距离。

  1. 然后,您必须按此比率对备选方案进行排序,然后选择一个胜过其他方案的方案。

现在,让我们将这一理论付诸实践...假设您想从不同的初创公司中选择哪项是最佳投资。而且,您只会考虑4个有益的标准:(A)销售收入,(B)有效用户,(C)生命周期价值,(D)回报率

## Here we have our decision matrix, in R known as performance matrix...
performanceTable <- matrix(c(5490,51.4,8.5,285,6500,70.6,7,
                              288,6489,54.3,7.5,290),
                              nrow=3,
                              ncol=4,
                              byrow=TRUE)

# The rows of the matrix contains the alternatives.
row.names(performanceTable) <- c("Wolox","Globant","Bitex")

# The columns contains the attributes:
colnames(performanceTable) <- c("Revenue","Users",
                               "LTV","Rrate")
# You set the weights depending on the importance for the decision-maker.
weights <- c(0.35,0.25,0.25,0.15)

# And here is WHERE YOU INDICATE THAT YOU WANT TO MAXIMISE ALL THOSE ATTRIBUTES!! :
criteriaMinMax <- c("max", "max", "max", "max")

然后在其余过程中,您可以按照TOPSIS函数上的R文档进行操作:https://www.rdocumentation.org/packages/MCDA/versions/0.0.19/topics/TOPSIS

资源:

参考:

    1 Hwang C. L.和Yoon,K.(1981)。多属性决策方法。在《多属性决策》(第58-191页)中。施普林格,柏林,海德堡。 詹姆斯·E·温特尔(2007)。矩阵代数:理论,计算和统计应用。施普林格出版社。 p。 299. ISBN 0-387-70872-3。