正如标题所述,我有一个不会执行的tensorflow ML文件。没有错误消息,也没有结果。终端只是说代码已完成。我正在关注有关https://www.tensorflow.org/tutorials/estimators/cnn
的教程这是最终代码:
##imports and startup
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
tf.logging.set_verbosity(tf.logging.INFO)
flags = tf.app.flags
FLAGS = flags.FLAGS
def main(args):
flags.DEFINE_string('name', None,
'Append a name Tag to run.')
flags.DEFINE_string('hypes', 'hypes/medseg.json',
'File storing model parameters.')
if __name__ == "__main__":
tf.app.run()
def cnn_model_fn(features, labels, mode):
input_layer = tf.reshape(features[x], [-1, 28, 28, 1]) ##reshaping the inputs to [batchsize, height, width, channel]
conv1 = tf.layers.conv2d(
inputs = input_layer,
filters=32,
kernel_size=[5,5],
padding=same,
activation=tf.nn.relu
)
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)
conv2 = tf.layers.conv2d(
inputs = pool1,
filters=64,
kernel_size=[5,5],
padding=same,
activation=tf.nn.relu
)
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)
pool2_flat = pool2.reshape(pool2, [-1, 7*7*64])
dense = tf.layers.dense(input = pool2_flat, units = 1024, activation = tf.nn.relu)
dropout = tf.layers.dropout(
inputs=dense, rate = 0.4, training=mode == tf.estimator.ModeKeys.TRAIN
)
logits = tf.layers.dense(inputs=dropout, units=10)
tf.argmax(input=logits, axis=1)
tf.nn.softmax(logits, name="softmax_tensor")
prediction={
"classes":tf.argmax(input=logits, axis=1),
"probabilities" : tf.nn.softmax(logits, name="softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(
loss=loss,
global_step=tf.train.get_global_step()
)
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
eval_metric_ops = {
"accuracy":tf.metrics.accuracy(
labels=labels, predictions=prediction["classes"])}
return tf.estimator.EstimatorSpec(
mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)
def main(unused_argv):
mnist = tf.contrib.learn.datasets.load_dataset("mnist")
train_data = mnist.train.images
train_labels = np.asarray(mnist.train.labels, dtype=np.int32)
eval_data=mnist.test.images
eval_labels = np.asarray(mnist.test.labels, dtype=np.int32)
mnist_classifier = tf.estimator.Estimator(
model_fn=cnn_model_fn, model_dir="/tmp/mnist_convnet_model"
)
tensors_to_log = {"probabilities": "softmax_tensor"}
logging_hook = tf.train.LoggingTensorHook(tensors = tensors_to_log, every_n_iter=50)
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x = {"x": "train_data"},
y=train_labels,
batch_size=50,
num_epochs = None,
shuffle = True
)
mnist_classifier.train(
input_fn=train_input_fn,
steps=20000,
hooks=[logging_hook]
)
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x":"eval_data"},
y=eval_labels,
num_epochs=1,
shuffle=False
)
eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
print(eval_results)
终端中的最终响应只是“退出代码为0的处理完成” 我尝试使用多个IDLE,并直接从教程中复制了代码,但没有任何更改。我该怎么办?