朱莉娅(Julia)的自动区分功能-是否完全无效?

时间:2018-08-11 21:49:00

标签: julia

Julia的ForwardDiff可以处理闭包吗?如果不是,那么它就不是很有用了,但是如果是,那么我在下面哪里出错了?

using ForwardDiff
function make_add(x)
   foo = y::Vector -> y+x
   return foo
end

zulu = make_add(17)

g = x-> ForwardDiff.gradient(zulu, x)

g([1, 2, 3])

MethodError: no method matching extract_gradient! 
  (::Type{ForwardDiff.Tag{##1#2{Int64},Int64}},  

 `::Array{Array{ForwardDiff.Dual{ForwardDiff.Tag{##1#2{Int64},Int64},Int64,3},1},1}, ::Array{ForwardDiff.Dual{ForwardDiff.Tag{##1#2{Int64},Int64},Int64,3},1})
Closest candidates are:
  extract_gradient!(::Type{T}, ::AbstractArray, ::ForwardDiff.Dual) where T at /home/jrun/.julia/v0.6/ForwardDiff/src/gradient.jl:76
  extract_gradient!(::Type{T}, ::AbstractArray, ::Real) where T at /home/jrun/.julia/v0.6/ForwardDiff/src/gradient.jl:75
  extract_gradient!(::Type{T}, ::DiffResults.DiffResult, ::ForwardDiff.Dual) where T at /home/jrun/.julia/v0.6/ForwardDiff/src/gradient.jl:70
  ...

Stacktrace:
 [1] gradient(::Function, ::Array{Int64,1}, ::ForwardDiff.GradientConfig{ForwardDiff.Tag{##1#2{Int64},Int64},Int64,3,Array{ForwardDiff.Dual{ForwardDiff.Tag{##1#2{Int64},Int64},Int64,3},1}}, ::Val{true}) at /home/jrun/.julia/v0.6/ForwardDiff/src/gradient.jl:17
 [2] gradient(::Function, ::Array{Int64,1}, ::ForwardDiff.GradientConfig{ForwardDiff.Tag{##1#2{Int64},Int64},Int64,3,Array{ForwardDiff.Dual{ForwardDiff.Tag{##1#2{Int64},Int64},Int64,3},1}}) at /home/jrun/.julia/v0.6/ForwardDiff/src/gradient.jl:15
 [3] (::##3#4)(::Array{Int64,1}) at ./In[8]:1`

编辑实际上,这与闭包无关。简单地:

h = x-> ForwardDiff.gradient(x-> x+17.0, x)

炸弹完全一样

2 个答案:

答案 0 :(得分:1)

gradient是为数组定义的。在标量上使用derivative

答案 1 :(得分:1)

ForwardDiff.gadient的文档中指出:

  

此方法假定isa(f(x), Real)

问题是您的函数返回的是向量而不是标量,因此您需要使用jacobian(接受数组作为返回值):

julia> function make_add(x)
          foo = y::Vector -> y .+ x
             return foo
             end
make_add (generic function with 1 method)

julia> zulu = make_add(17)
#27 (generic function with 1 method)

julia> g = x-> ForwardDiff.jacobian(zulu, x)
#29 (generic function with 1 method)

julia> g([1, 2, 3])
3×3 Array{Int64,2}:
 1  0  0
 0  1  0
 0  0  1

还请注意,我在+之前添加了一个点(因此其读为y .+ x),因为在当前版本的Julia 1.0中,不允许在不广播的情况下向向量添加标量。 / p>