我需要计算前4周的平均值...
SELECT
*,
AVG(val) OVER (PARTITION BY some_identifier, day_of_week_column
ORDER BY date_column
ROW BETWEEN 4 PRECEDING AND 1 PRECEDING
)
AS preceding_4_week_average
FROM
myTable
但是,数据是“稀疏的”
在这种情况下,我的窗口函数应该向后看“ 4周”而不是“ 4行”。
-缺少日期不是0
,而是隐含的NULL
thing | date | dow | val | avg
1 | 2018-01-01 | 1 | 1 | NULL <= AVG({})
1 | 2018-01-08 | 1 | 2 | 1 <= AVG({1})
1 | 2018-01-15 | 1 | 3 | 1.5 <= AVG({1,2})
1 | 2018-01-22 | 1 | 4 | 2 <= AVG({1,2,3})
1 | 2018-01-29 | 1 | 5 | 2.5 <= AVG({1,2,3,4})
1 | 2018-02-12 | 1 | 7 | 4 <= AVG({3,4,5})
1 | 2018-02-19 | 1 | 8 | 5.33 <= AVG({4,5,7})
1 | 2018-02-26 | 1 | 9 | 6.66 <= AVG({5,7,8})
1 | 2018-03-05 | 1 | 10 | 8 <= AVG({7,8,9})
1 | 2018-03-12 | 1 | 11 | 11.25 <= AVG({7,8,9,10})
1 | 2018-03-19 | 1 | 12 | 9.5 <= AVG({8,9,10,11})
注意:2018年2月5日没有价值
我通常会以以下两种方式之一进行处理...
AVG()
“忽略” NULL。这不理想,因为“事物”的数量巨大并且构造此模板的成本很高。
SELECT
*,
AVG(mytable.val) OVER (PARTITION BY things.id, dates.dow
ORDER BY dates.date
ROW BETWEEN 4 PRECEDING AND 1 PRECEDING
)
AS preceding_4_week_average
FROM
things
CROSS JOIN
dates
LEFT JOIN
myTable
ON myTable.date = dates.date
AND myTable.id = things.id
这不理想,因为myTable中有数百个列,而BigQuery在此方面的效果不是很好。
SELECT
myTable.*,
AVG(hist.val) AS preceding_4_week_average
FROM
myTable
LEFT JOIN
myTable AS hist
ON hist.id = myTable.id
AND hist.date >= myTable.date - INTERVAL 28 DAYS
AND hist.date < myTable.date
GROUP BY
myTable.column1,
myTable.column2,
etc, etc
实际问题
是否还有其他人可以选择,最好使用窗口/分析功能“回顾4周”而不是“回顾4行”?
答案 0 :(得分:3)
以下是用于BigQuery标准SQL
您将看到-诀窍是使用function onEachFeature(feature, layer) {
idLoDat = feature.properties.IDLo;
layer.bindPopup("Company name: " + feature.properties.TenCty +
"</br>Detail: <a href='index.php?id=" + idLoDat + "'</a>");
};
而不是RANGE
ROW
您可以使用下面的问题中的虚拟数据进行测试,操作
#standardSQL
SELECT *,
AVG(val) OVER(
PARTITION BY id, dow
ORDER BY DATE_DIFF(DATE_TRUNC(date, WEEK), DATE_TRUNC(CURRENT_DATE(), WEEK), WEEK)
RANGE BETWEEN 4 PRECEDING AND 1 PRECEDING
) AVG
FROM `project.dataset.table`
结果为
#standardSQL
WITH `project.dataset.table` AS (
SELECT 1 id, DATE '2018-01-01' date, 1 dow, 1 val UNION ALL
SELECT 1, '2018-01-08', 1, 2 UNION ALL
SELECT 1, '2018-01-15', 1, 3 UNION ALL
SELECT 1, '2018-01-22', 1, 4 UNION ALL
SELECT 1, '2018-01-29', 1, 5 UNION ALL
SELECT 1, '2018-02-12', 1, 7 UNION ALL
SELECT 1, '2018-02-19', 1, 8 UNION ALL
SELECT 1, '2018-02-26', 1, 9 UNION ALL
SELECT 1, '2018-03-05', 1, 10 UNION ALL
SELECT 1, '2018-03-12', 1, 11 UNION ALL
SELECT 1, '2018-03-19', 1, 12
)
SELECT *,
AVG(val) OVER(
PARTITION BY id, dow
ORDER BY DATE_DIFF(DATE_TRUNC(date, WEEK), DATE_TRUNC(CURRENT_DATE(), WEEK), WEEK)
RANGE BETWEEN 4 PRECEDING AND 1 PRECEDING
) avg
FROM `project.dataset.table`
-- ORDER BY date
答案 1 :(得分:0)
这是蛮力,但应该更快:
select t.*,
((case when date_1 >= date_add(date, interval -4 week)
then val_1 else 0
end) +
(case when date_2 >= date_add(date, interval -4 week)
then val_2 else 0
end) +
(case when date_3 >= date_add(date, interval -4 week)
then val_3 else 0
end) +
(case when date_4 >= date_add(date, interval -4 week)
then val_4 else 0
end)
) /
((case when date_1 >= date_add(date, interval -4 week)
then 1 else 0
end) +
(case when date_2 >= date_add(date, interval -4 week)
then 1 else 0
end) +
(case when date_3 >= date_add(date, interval -4 week)
then 1 else 0
end) +
(case when date_4 >= date_add(date, interval -4 week)
then 1 else 0
end)
)
from (select t.*,
lag(val, 1) over (partition by id, dow order by date) as val_1,
lag(val, 2) over (partition by id, dow order by date) as val_2,
lag(val, 3) over (partition by id, dow order by date) as val_3,
lag(val, 4) over (partition by id, dow order by date) as val_4,
lag(date, 1) over (partition by id, dow order by date) as date_1,
lag(date, 2) over (partition by id, dow order by date) as date_2,
lag(date, 3) over (partition by id, dow order by date) as date_3,
lag(date, 4) over (partition by id, dow order by date) as date_4
from mytable t
) t;
可能有一种聪明的方式使用数组来表达这一点,但是我现在还早一点。