我知道可以使用reduce
使用Bioconductor的IRanges软件包解决以下问题。
但是由于该函数仅接受数字输入,并且无论如何我都在使用data.table,所以我想知道使用data.tables'foverlaps()
可以实现以下效果。
structure(list(group = c("A", "A", "A", "A", "B", "B", "B", "B"
), subgroup = c(1, 1, 2, 2, 1, 1, 2, 2), start = structure(c(1514793600,
1514795400, 1514794200, 1514798100, 1514815200, 1514817000, 1514815800,
1514818800), class = c("POSIXct", "POSIXt"), tzone = "UTC"),
end = structure(c(1514794500, 1514797200, 1514794800, 1514799000,
1514816100, 1514818800, 1514817600, 1514820600), class = c("POSIXct",
"POSIXt"), tzone = "UTC")), row.names = c(NA, -8L), class = c("tbl_df",
"tbl", "data.frame"))
# group subgroup start end
# 1: A 1 2018-01-01 08:00:00 2018-01-01 08:15:00
# 2: A 1 2018-01-01 08:30:00 2018-01-01 09:00:00
# 3: A 2 2018-01-01 08:10:00 2018-01-01 08:20:00
# 4: A 2 2018-01-01 09:15:00 2018-01-01 09:30:00
# 5: B 1 2018-01-01 14:00:00 2018-01-01 14:15:00
# 6: B 1 2018-01-01 14:30:00 2018-01-01 15:00:00
# 7: B 2 2018-01-01 14:10:00 2018-01-01 14:40:00
# 8: B 2 2018-01-01 15:00:00 2018-01-01 15:30:00
我想实现的是在以下情况下加入/合并事件(按组):
子组可以忽略
如上所述,我知道可以使用biocondustor的IRanges reduce
完成此操作,但是我想知道是否可以使用data.table实现相同的操作。我无法撼动foverlaps
应该能够解决我的问题的感觉,但是我不知道该如何解决……
由于我是R的中级用户,但几乎是data.table的新手,所以我很难“阅读” stackoverflow上已经提供的一些解决方案。因此,我不确定是否已经提出和回答过类似的问题(如果是,请轻描淡写;-))
structure(list(group = c("A", "A", "A", "B"), start = structure(c(1514793600,
1514795400, 1514798100, 1514815200), class = c("POSIXct", "POSIXt"
), tzone = "UTC"), end = structure(c(1514794800, 1514797200,
1514799000, 1514820600), class = c("POSIXct", "POSIXt"), tzone = "UTC")), row.names = c(NA,
-4L), class = c("tbl_df", "tbl", "data.frame"))
# group start end
# 1: A 2018-01-01 08:00:00 2018-01-01 08:20:00
# 2: A 2018-01-01 08:30:00 2018-01-01 09:00:00
# 3: A 2018-01-01 09:15:00 2018-01-01 09:30:00
# 4: B 2018-01-01 14:00:00 2018-01-01 15:30:00
答案 0 :(得分:1)
如果您安排分组并以该顺序开始,并且未选择indx列,那么由David Arenburg发布的此解决方案非常有效:How to flatten/merge overlapping time periods in R
library(dplyr)
df1 %>%
group_by(group) %>%
arrange(group, start) %>%
mutate(indx = c(0, cumsum(as.numeric(lead(start)) >
cummax(as.numeric(end)))[-n()])) %>%
group_by(group, indx) %>%
summarise(start = first(start), end = last(end)) %>%
select(-indx)
group start end
<chr> <dttm> <dttm>
1 A 2018-01-01 08:00:00 2018-01-01 08:20:00
2 A 2018-01-01 08:30:00 2018-01-01 09:00:00
3 A 2018-01-01 09:15:00 2018-01-01 09:30:00
4 B 2018-01-01 14:00:00 2018-01-01 15:30:00