%lprun无法获得结果jupyternotebook

时间:2018-06-10 06:58:23

标签: jupyter-notebook ipython-magic

代码:

var weekDateStr = [];
var date = moment().startOf('week');
for(var i = 0; i < 7; i++) {
    console.log(date.format('ddd, MMM Do'));
    weekDateStr.push(date.format('ddd, MMM Do'));
    date = date.adḍ̣(1, 'day')
}
console.log(weekDateStr);

当我在jupyter notbook中运行def combCreate(grp,num): d = chain(*(map(lambda x: (combinations(x,num)),grp))) return set(d) # Comb DataFrame abt Freq & occured date def combFrame(grp): arr = df.loc[:,'date':'6th'].values t = [] cnt = [] for i in grp: tmp_cnt = 0 tmp_time = [] for v,date in zip(arr[:,1:],arr[:,0]): if set(i)<=set(v): tmp_time.append(date) tmp_cnt=tmp_cnt+1 t.append(tuple(tmp_time)) cnt.append(tmp_cnt) df_comb = pd.DataFrame({'cnt':cnt,'time':t},index=grp) return df_comb t_arr = df.loc[:,'1st':'6th'].values[:5] comb_create = combCreate(t_arr,4) %lprun -f combFrame(comb_create) 时,除了%lprun之外什么也看不见。我不知道这意味着什么。

UserWarning

希望:

解决它并解释原因。

1 个答案:

答案 0 :(得分:1)

我错过了在%lprun之后添加功能名称。正确答案是

 %lprun -f combFrame combFrame(comb_create)

Total time: 0.630435 s
File: <ipython-input-340-ea2ba2ae7d55>
Function: combFrame at line 10

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
    10                                           def combFrame(grp):
    11         1      32015.0  32015.0      5.1      arr = df.loc[:,'date':'6th'].values
    12         1          4.0      4.0      0.0      t = []
    13         1          2.0      2.0      0.0      cnt = []
    14        76        420.0      5.5      0.1      for i in grp:
    15        75         59.0      0.8      0.0          tmp_cnt = 0
    16        75         88.0      1.2      0.0          tmp_time = []
    17    170025     157326.0      0.9     25.0          for v,date in zip(arr[:,1:],arr[:,0]):
    18    169950     428583.0      2.5     68.0              if set(i)<=set(v):
    19       155        236.0      1.5      0.0                  tmp_time.append(date)
    20       155        158.0      1.0      0.0                  tmp_cnt=tmp_cnt+1
    21        75        586.0      7.8      0.1          t.append(tuple(tmp_time))
    22        75        107.0      1.4      0.0          cnt.append(tmp_cnt)
    23         1      10849.0  10849.0      1.7      df_comb = pd.DataFrame({'cnt':cnt,'time':t},index=grp)
    24         1          2.0      2.0      0.0      return df_comb