使用sklean和种子

时间:2018-05-29 10:56:30

标签: python machine-learning scikit-learn neural-network random-seed

在sklearn中运行神经网络之后,即使在实现种子功能之后,我也会收到不一致的结果。每次运行代码时,我都会收到不同的MSE值和每个测试种子值的R平方。这些值可以在很大范围内,R平方为-0.1到0.6之间的任何值。我想知道它是否是一个数据问题,因为我只有22列和241行。我也尝试过设置

mlp=MLPRegressor(hidden_layer_sizes=(22,22,22),max_iter=2000,learning_rate_init=0.001,random_state=0)

以及更改random_state的值。 下面是我的代码。非常感谢

import matplotlib.pyplot as plt
import pandas as pd
import sklearn
import numpy as np
data=pd.read_csv(r'''D:\PhD\1styear\machinelearning\NNforF2050\DATAnnF2050.csv''')
print(data.shape)
print(data.dtypes)

x=data.drop('EnergyConsumpManuf',axis=1)


y=data['EnergyConsumpManuf']


from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)

from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
scaler.fit(x_train)
x_train=scaler.transform(x_train)
x_test=scaler.transform(x_test)

from sklearn.neural_network import MLPRegressor 
from sklearn import metrics
from sklearn.metrics import accuracy_score
from math import sqrt

for i in range(15):
    print('np.random.seed(%d)'%(i))
    np.random.seed(i)
    mlp=MLPRegressor(hidden_layer_sizes=(22,22,22),max_iter=2000,learning_rate_init=0.001)
    mlp.fit(x_train,y_train)
    predictions=mlp.predict(x_test)
    print('MSE train: ',metrics.mean_squared_error(y_test,predictions))
    RMS=sqrt(metrics.mean_squared_error(y_test,predictions))
    print('RMS',RMS)
    RTWO=sklearn.metrics.r2_score(y_test,predictions)
    print('RTWO',RTWO)
    print('MAE',metrics.mean_absolute_error(y_test,predictions))

1 个答案:

答案 0 :(得分:0)

您还需要设置random_state功能的train_test_split参数。如果没有固定的随机状态,每次都会随机分割数据,这就是每次运行代码时结果都会发生变化的原因。