错误:
facebook sdk error(error code 6)
训练输入功能:
Traceback (most recent call last):
File "C:/Users/xx/abc/Final.py", line 167, in <module>
tf.app.run()
File "C:\Users\xx\tensorflow\python\platform\app.py", line 126, in run
_sys.exit(main(argv))
File "C:/Users/xx/abc/Final.py", line 148, in main
hooks=[logging_hook])
File "C:\Users\xx\tensorflow\python\estimator\estimator.py", line 363, in train
loss = self._train_model(input_fn, hooks, saving_listeners)
File "C:\Users\xx\tensorflow\python\estimator\estimator.py", line 843, in _train_model
return self._train_model_default(input_fn, hooks, saving_listeners)
File "C:\Users\xx\tensorflow\python\estimator\estimator.py", line 856, in _train_model_default
features, labels, model_fn_lib.ModeKeys.TRAIN, self.config)
File "C:\Users\xx\tensorflow\python\estimator\estimator.py", line 831, in _call_model_fn
model_fn_results = self._model_fn(features=features, **kwargs)
File "C:/Users/xx/abc/Final.py", line 61, in cnn_model_fn
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
File "C:\Users\xx\tensorflow\python\ops\losses\losses_impl.py", line 853, in sparse_softmax_cross_entropy
name="xentropy")
File "C:\Users\xx\tensorflow\python\ops\nn_ops.py", line 2046, in sparse_softmax_cross_entropy_with_logits
logits.get_shape()))
ValueError: Shape mismatch: The shape of labels (received (100,)) should equal the shape of logits except for the last dimension (received (300, 10)).
所有数据集形状
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": train_data},
y=train_labels,
batch_size=100,
num_epochs=None,
shuffle=True)
我读了其他StackOverflow问题,其中大多数都指出将损失函数计算为错误点。代码发送一批100个标签的事实导致问题?
我该如何解决这个问题?事实上,图像和标签的数量不是100的倍数是这个问题的根源吗?
我的模型正在训练只有0和1 所以我想我必须改变这个
print(train_data.shape)
//Output: (9490, 2352)
train_labels = np.asarray(label_MAX[0], dtype=np.int32)
print(train_labels.shape)
//Output: (9490,)
eval_data = datasets[1] # Returns np.array
print(eval_data.shape)
//Output: (3175, 2352)
eval_labels = np.asarray(label_MAX[1], dtype=np.int32)
print(eval_labels.shape)
//Output: (3175,)
并将单位数更改为2?
答案 0 :(得分:2)
问题来自于您正在使用RGB图像。该模型设计用于灰度图像,如CNN定义顶部附近的行input_layer = tf.reshape(features["x"], [-1, 28, 28, 1])
所示。有3个通道而不是1通道意味着这里的批量大小将是三倍。
要解决此问题,请将该行更改为input_layer = tf.reshape(features["x"], [-1, 28, 28, 3])
。
答案 1 :(得分:1)
我遇到了同样的错误。我意识到我没有展平我的图像数据。包含Flatten()层后,就可以正确处理神经网络了。您可以尝试在密集层之前添加展平层吗?