我正在寻找一种基于向量对data.tables进行子集化的有效方法。
这不起作用:
library(data.table)
z <- data.table(mtcars)
ids <- z[wt > 3.5, "mpg"]
z[mpg %in% ids, ]
我希望它可以工作 - 基于data.frames的这种行为。
ids2 <- mtcars[mtcars$wt > 3.5, "mpg"]
mtcars[mtcars$mpg %in% ids2, ]
如果我只输入它起作用的数字:
z[ mpg %in% c( 14.3 , 10.4) , ]
我尝试过转换课程:
subset(z, mpg %in% ids)
subset(z, as.numeric (mpg) %in% as.numeric( ids))
subset(z, as.character(mpg) %in% as.character( ids ))
答案 0 :(得分:4)
z[wt > 3.5, "mpg"]
将为您提供data.table
,您需要取消引用mpg
以获取向量:
ids <- z[wt > 3.5, mpg]
z[mpg %in% ids]
给出:
mpg cyl disp hp drat wt qsec vs am gear carb 1: 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 2: 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 3: 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 4: 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 5: 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 6: 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 7: 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 8: 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 9: 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 10: 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 11: 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 12: 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 13: 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
或者您也可以使用data.table
设置密钥的功能:
z <- data.table(mtcars, key = 'mpg')
ids <- z[wt > 3.5, unique(mpg)]
z[.(ids)]
答案 1 :(得分:2)
关于OP中提到的效率,这里有一些方法供您考虑。使用if(any(...
是最快的。
library(data.table)
M <- 1e7
set.seed(0L)
z <- data.table(
mpg=c(sample(LETTERS[1:13], M, replace=TRUE),
sample(LETTERS[14:26], M, replace=TRUE)),
wt=c(rnorm(M), rnorm(M, 3.5))
)
op <- function() {
z[mpg %in% z[wt > 3.5, mpg]]
}
dtUniq <- function() {
z[mpg %in% z[wt > 3.5, unique(mpg)] ]
}
useif <- function() {
z[, if(any(wt > 3.5)) .SD, by=mpg]
}
equijoin <- function() {
z[unique(z[wt > 3.5, "mpg"]), on=.(mpg)]
}
identical(setorder(op(), mpg), setorder(dtUniq(), mpg))
#[1] TRUE
identical(setorder(op(), mpg), setorder(useif(), mpg))
#[1] TRUE
identical(setorder(op(), mpg), setorder(equijoin(), mpg))
#[1] TRUE
library(microbenchmark)
microbenchmark(op(), dtUniq(), useif(), equijoin(), times=3L)
定时:
Unit: seconds
expr min lq mean median uq max neval
op() 4.386059 4.546217 4.676105 4.706374 4.821128 4.935883 3
dtUniq() 4.340680 4.562036 4.658450 4.783393 4.817335 4.851276 3
useif() 1.098922 1.197751 1.238395 1.296581 1.308131 1.319682 3
equijoin() 2.345496 2.389649 2.424599 2.433802 2.464151 2.494500 3
时间最终取决于数据集的维度和其他要求。