我有前三名的数据。我正在尝试创建一个在x轴上具有列名称(成本/产品)的图,y值是频率(理想情况下是相对频率,但我不知道如何在dplyr中获得该值)。
我试图通过dplyr中汇总的值来绘制。我有一个dplyr数据框,看起来像这样:
likelyReasonFreq<- LikelyRenew_Reason %>%
filter(year==3)%>%
filter(status==1)%>%
summarize(costC = count(cost),
productsC = count(products))
> likelyReasonFreq
costC.x costC.freq productsC.x productsC.freq
1 1 10 1 31
2 2 11 2 40
3 3 17 3 30
4 NA 149 NA 86
我正在尝试创建一个条形图,显示成本和产品的总(总和)频率。因此,成本频率将是排名为1,2或3的次数的频率.38基本上我将行1:3相加(对于产品,它将是101(不包括NA值)。
我不知道如何解决这个问题,任何想法?
下面是变量possibleReasonFreq
> dput(head(likelyReasonFreq))
structure(list(costC = structure(list(x = c(1, 2, 3, NA), freq = c(10L,
11L, 17L, 149L)), .Names = c("x", "freq"), row.names = c(NA,
4L), class = "data.frame"), productsC = structure(list(x = c(1,
2, 3, NA), freq = c(31L, 40L, 30L, 86L)), .Names = c("x", "freq"
), row.names = c(NA, 4L), class = "data.frame")), .Names = c("costC",
"productsC"), row.names = c(NA, 4L), class = "data.frame")
我感谢任何建议!
答案 0 :(得分:2)
您的数据结构使用起来有点尴尬,您可以str
或glimpse
查看问题,但是您可以按照以下方式修复此问题,然后可以绘制它。
> str(df)
'data.frame': 4 obs. of 2 variables:
$ costC :'data.frame': 4 obs. of 2 variables:
..$ x : num 1 2 3 NA
..$ freq: int 10 11 17 149
$ productsC:'data.frame': 4 obs. of 2 variables:
..$ x : num 1 2 3 NA
..$ freq: int 31 40 30 86
绘图时要遵循的代码:
library(ggplot2)
library(tidyverse)
df <- df %>% map(unnest) %>% bind_rows(.id="Name") %>% na.omit() #fixing the structure of column taken as a set of two separate columns
df %>%
ggplot(aes(x=Name, y= freq)) +
geom_col()
我希望这是预期的,尽管我并不完全确定。
输入数据:
df <- structure(list(costC = structure(list(x = c(1, 2, 3, NA), freq = c(10L,
11L, 17L, 149L)), .Names = c("x", "freq"), row.names = c(NA,
4L), class = "data.frame"), productsC = structure(list(x = c(1,
2, 3, NA), freq = c(31L, 40L, 30L, 86L)), .Names = c("x", "freq"
), row.names = c(NA, 4L), class = "data.frame")), .Names = c("costC",
"productsC"), row.names = c(NA, 4L), class = "data.frame")
<强>输出强>:
在OP请求后添加:
在这里,我没有删除NAs,而是用新值替换了#4;&#39;。为了获得各组之间的相对和,我使用了cumsum
,然后除以两组中的总和来得到相对频率。
df <- df %>% map(unnest) %>% bind_rows(.id="Name")
df[is.na(df$x),"x"] <- 4
df %>%
group_by(Name) %>%
mutate(sum_Freq = sum(freq), cum_Freq = cumsum(freq)) %>%
filter(x == 3) %>%
mutate(new_x = cum_Freq*100/sum_Freq) %>%
ggplot(aes(x=Name, y = new_x)) +
geom_col()