我正在尝试利用deeplearning.ai的课程中的代码来分析我自己的一个数据集。
当我尝试实现代码时,我认为适当的改动,我看到每个时代后我的成本不会改变(成本= 1.459)。
我尝试通过删除小批量来改变代码以使其更简单,但成本仍然相同。顺便说一句,当我在课程中这样做时,它按预期运行,但又在不同的数据集上运行。
以下代码:
import tensorflow as tf
import numpy as np
import pandas as pd
import math
import matplotlib.pyplot as plt
from tensorflow.python.framework import ops
from math import floor, ceil
from sklearn.model_selection import train_test_split
# import data
X_main = pd.read_csv(r"C:\Users\Mike\Desktop\Radiation Oncology\Glioma\CSV data\glioma DB X.csv")
Y_main = pd.read_csv(r"C:\Users\Mike\Desktop\Radiation Oncology\Glioma\CSV data\glioma DB Y.csv")
# Need to split data into train, validate, test
# partition with sklearn (still as dataframe)
x_train, x_test, y_train, y_test = train_test_split(X_main, Y_main, test_size=0.3)
x_test, x_val, y_test, y_val = train_test_split(x_test, y_test, test_size=0.5)
# Normalize training data; will want to have the same mu and sigma for test
def normalize_features(dataset):
mu = np.mean(dataset, axis = 0) # columns
sigma = np.std(dataset, axis = 0)
norm_parameters = {'mu': mu,
'sigma': sigma}
return (dataset-mu)/(sigma+1e-10), norm_parameters
# Normal X data; using same mu and sigma from test set; then transposed
x_train, norm_parameters = normalize_features(x_train)
x_val = (x_val-norm_parameters['mu'])/(norm_parameters['sigma']+1e-10)
x_test = (x_test-norm_parameters['mu'])/(norm_parameters['sigma']+1e-10)
x_train = np.transpose(x_train)
x_val = np.transpose(x_val)
x_test = np.transpose(x_test)
y_train = np.transpose(y_train)
y_val = np.transpose(y_val)
y_test = np.transpose(y_test)
# converting values from database to matrix
x_train = x_train.as_matrix()
x_val = x_val.as_matrix()
x_test = x_test.as_matrix()
y_train = y_train.as_matrix()
y_val = y_val.as_matrix()
y_test = y_test.as_matrix()
# testing shape
print(y_train.shape)
print(y_val.shape)
print(y_test.shape)
print(x_train.shape)
print(x_val.shape)
print(x_test.shape)
# convert y to array per value so 3 = [0 0 1]
def convert_to_one_hot(Y, C):
Y = np.eye(C)[Y.reshape(-1)].T
return Y
y_train = convert_to_one_hot(y_train, 4)
y_val = convert_to_one_hot(y_val, 4)
y_test = convert_to_one_hot(y_test, 4)
print ("number of training examples = " + str(x_train.shape[1]))
print ("number of test examples = " + str(x_test.shape[1]))
print ("X_train shape: " + str(x_train.shape))
print ("Y_train shape: " + str(y_train.shape))
print ("X_test shape: " + str(x_test.shape))
print ("Y_test shape: " + str(y_test.shape))
# minibatches for later
def random_mini_batches(X, Y, mini_batch_size = 64, seed = 0):
"""
Creates a list of random minibatches from (X, Y)
Arguments:
X -- input data, of shape (input size, number of examples)
Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)
mini_batch_size - size of the mini-batches, integer
seed -- this is only for the purpose of grading, so that you're "random minibatches are the same as ours.
Returns:
mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y)
"""
m = X.shape[1] # number of training examples
mini_batches = []
# Step 1: Shuffle (X, Y)
permutation = list(np.random.permutation(m))
shuffled_X = X[:, permutation]
shuffled_Y = Y[:, permutation].reshape((Y.shape[0],m))
# Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.
num_complete_minibatches = math.floor(m/mini_batch_size) # number of mini batches of size mini_batch_size in your partitionning
for k in range(0, num_complete_minibatches):
mini_batch_X = shuffled_X[:, k * mini_batch_size : k * mini_batch_size + mini_batch_size]
mini_batch_Y = shuffled_Y[:, k * mini_batch_size : k * mini_batch_size + mini_batch_size]
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)
# Handling the end case (last mini-batch < mini_batch_size)
if m % mini_batch_size != 0:
mini_batch_X = shuffled_X[:, num_complete_minibatches * mini_batch_size : m]
mini_batch_Y = shuffled_Y[:, num_complete_minibatches * mini_batch_size : m]
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)
return mini_batches
# starting TF graph
# Create X and Y placeholders
def create_xy_placeholder(n_x, n_y):
X = tf.placeholder(tf.float32, shape = [n_x, None], name = 'X')
Y = tf.placeholder(tf.float32, shape = [n_y, None], name = 'Y')
return X, Y
X, Y = create_xy_placeholder(x_train.shape[0],y_train.shape[0])
print('X = ' + str(X))
print('Y = ' + str(Y))
# initialize parameters for 3 hidden layer network
def initialize_parameters():
W1 = tf.get_variable('W1', [50, 67], initializer = tf.contrib.layers.xavier_initializer())
b1 = tf.get_variable("b1", [50,1], initializer = tf.zeros_initializer())
W2 = tf.get_variable('W2', [40, 50], initializer = tf.contrib.layers.xavier_initializer())
b2 = tf.get_variable("b2", [40,1], initializer = tf.zeros_initializer())
W3 = tf.get_variable('W3', [4, 40], initializer = tf.contrib.layers.xavier_initializer())
b3 = tf.get_variable("b3", [1,1], initializer = tf.zeros_initializer())
parameters = {"W1": W1,
"b1": b1,
"W2": W2,
"b2": b2,
"W3": W3,
"b3": b3}
return parameters
tf.reset_default_graph()
with tf.Session() as sess:
parameters = initialize_parameters()
print("W1 = " + str(parameters["W1"]))
print("b1 = " + str(parameters["b1"]))
print("W2 = " + str(parameters["W2"]))
print("b2 = " + str(parameters["b2"]))
# forward propagation
def forward_propagation(X, parameters):
# Retrieve the parameters from the dictionary "parameters"
W1 = parameters['W1']
b1 = parameters['b1']
W2 = parameters['W2']
b2 = parameters['b2']
W3 = parameters['W3']
b3 = parameters['b3']
Z1 = tf.matmul(W1, X) + b1
A1 = tf.nn.relu(Z1)
Z2 = tf.matmul(W2, A1) + b2
A2 = tf.nn.relu(Z2)
Z3 = tf.matmul(W3, A2) + b3
return Z3
tf.reset_default_graph()
with tf.Session() as sess:
X, Y = create_xy_placeholder(x_train.shape[0], y_train.shape[0])
parameters = initialize_parameters()
Z3 = forward_propagation(X, parameters)
print("Z3 = " + str(Z3))
# compute cost
def compute_cost(Z3, Y):
logits = tf.transpose(Z3)
labels = tf.transpose(Y)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = logits,
labels = labels))
return cost
tf.reset_default_graph()
with tf.Session() as sess:
X, Y = create_xy_placeholder(x_train.shape[0], y_train.shape[0])
parameters = initialize_parameters()
Z3 = forward_propagation(X, parameters)
cost = compute_cost(Z3, Y)
print("cost = " + str(cost))
def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.0001,
num_epochs = 1500, minibatch_size = 32, print_cost = True):
ops.reset_default_graph() # to be able to rerun the model without overwriting tf variables
tf.set_random_seed(1) # to keep consistent results
seed = 3 # to keep consistent results
(n_x, m) = X_train.shape # (n_x: input size, m : number of examples in the train set)
n_y = Y_train.shape[0] # n_y : output size
costs = [] # To keep track of the cost
# Create Placeholders of shape (n_x, n_y)
X, Y = create_xy_placeholder(n_x, n_y)
# Initialize parameters
parameters = initialize_parameters()
# Forward propagation: Build the forward propagation in the tensorflow graph
Z3 = forward_propagation(X, parameters)
# Cost function: Add cost function to tensorflow graph
cost = compute_cost(Z3, Y)
# Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer.
optimizer = tf.train.AdamOptimizer(learning_rate = learning_rate).minimize(cost)
# Initialize all the variables
init = tf.global_variables_initializer()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
# Start the session to compute the tensorflow graph
with tf.Session(config=config) as sess:
# Run the initialization
sess.run(init)
# Do the training loop
for epoch in range(num_epochs):
epoch_cost = 0. # Defines a cost related to an epoch
num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set
seed = seed + 1
minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)
for minibatch in minibatches:
# Select a minibatch
(minibatch_X, minibatch_Y) = minibatch
# IMPORTANT: The line that runs the graph on a minibatch.
# Run the session to execute the "optimizer" and the "cost", the feedict should contain a minibatch for (X,Y).
_ , minibatch_cost = sess.run([optimizer, cost], feed_dict = {X: minibatch_X, Y: minibatch_Y})
epoch_cost += minibatch_cost / num_minibatches
# Print the cost every epoch
if print_cost == True and epoch % 100 == 0:
print ("Cost after epoch %i: %f" % (epoch, epoch_cost))
if print_cost == True and epoch % 5 == 0:
costs.append(epoch_cost)
# plot the cost
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per tens)')
plt.title("Learning rate =" + str(learning_rate))
plt.show()
# lets save the parameters in a variable
parameters = sess.run(parameters)
print ("Parameters have been trained!")
# Calculate the correct predictions
correct_prediction = tf.equal(tf.argmax(Z3), tf.argmax(Y))
# Calculate accuracy on the test set
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print ("Train Accuracy:", accuracy.eval({X: X_train, Y: Y_train}))
print ("Test Accuracy:", accuracy.eval({X: X_test, Y: Y_test}))
return parameters
parameters = model(x_train, y_train, x_test, y_test)
编辑: 在遵循评论中提到的跟踪之后,我能够获得改进的学习