我想从表中取两个变量并将它们除以第三个变量,并将这些计算添加为两个新列。 mutate_at()
让我非常接近,但在下面的自定义函数f()
中,我想访问数据集中的另一列。任何建议或其他整洁的工具方法?
library(dplyr)
# this works fine but is NOT what I want
f <- function(fld){
fld/5
}
# This IS what I want where wt is a field in the data
f <- function(fld){
fld/wt
}
mutate_at(mtcars, .vars = vars(mpg, cyl), .funs = funs(xyz = f))
# This works but is pretty clumsy
f <- function(fld, dat) fld/dat$wt
mutate_at(mtcars, .vars = vars(mpg, cyl), .funs = funs(xyz = f(., mtcars)))
# This is closer but still it would be better if the function allowed the dataset to be submitted to the function without restating the name of the dataset
f <- function(fld, second){
fld/second
}
mutate_at(mtcars, .vars = vars(mpg, cyl), .funs = funs(xyz = f(., wt)))
答案 0 :(得分:6)
也许是这样的?
f <- function(fld,var){
fld/var
}
mtcars %>%
mutate_at(vars(mpg,cyl), .funs = funs(xyz = f(.,wt)))
答案 1 :(得分:6)
library(tidyverse)
f <- function(num, denom) num/denom
mtcars %>%
mutate_at(vars(mpg, cyl), f, denom = quote(wt))
虽然在此特定示例中,不需要自定义功能。
mtcars %>%
mutate_at(vars(mpg, cyl), `/`, quote(wt))
答案 2 :(得分:1)
有一个 cur_data()
函数有助于使 mutate_at()
调用更加紧凑,因为您不必为正在应用的函数指定第二个参数每列:
f <- function(fld){
fld / cur_data()$wt
}
mutate_at(mtcars, .vars=vars(mpg, cyl), .funs=funs(xyz = f))
附加说明:
cur_data_all()
mutate_at
现在被 mutate(.data, across())
取代,所以最好这样做mtcars %>% mutate(across(.cols=c(mpg, cyl), .fns=f, .names='{.col}_xyz'))
答案 3 :(得分:0)
为什么不简单
mutate(mtcars, mpg2 = mpg / wt, cyl2 = cyl / wt)