我正在尝试使用play框架在scala中的kubernetes集群上提交spark 2.3作业。
我还试过一个简单的scala程序而不使用play框架。
这项工作已经提交到k8集群,但是状态改变了& infoChanged没有被调用。我也希望能够获得handle.getAppId。
我正在使用spark submit提交作业,如here
所述$ bin/spark-submit \
--master k8s://https://<k8s-apiserver-host>:<k8s-apiserver-port> \
--deploy-mode cluster \
--name spark-pi \
--class org.apache.spark.examples.SparkPi \
--conf spark.executor.instances=5 \
--conf spark.kubernetes.container.image=<spark-image> \
local:///path/to/examples.jar
以下是该职位的代码:
def index = Action {
try {
val spark = new SparkLauncher()
.setMaster("my k8 apiserver host")
.setVerbose(true)
.addSparkArg("--verbose")
.setMainClass("myClass")
.setAppResource("hdfs://server/inputs/my.jar")
.setConf("spark.app.name","myapp")
.setConf("spark.executor.instances","5")
.setConf("spark.kubernetes.container.image","mydockerimage")
.setDeployMode("cluster")
.startApplication(new SparkAppHandle.Listener(){
def infoChanged(handle: SparkAppHandle): Unit = {
System.out.println("Spark App Id ["
+ handle.getAppId
+ "] Info Changed. State ["
+ handle.getState + "]")
}
def stateChanged(handle: SparkAppHandle): Unit = {
System.out.println("Spark App Id ["
+ handle.getAppId
+ "] State Changed. State ["
+ handle.getState + "]")
if (handle.getState.toString == "FINISHED") System.exit(0)
}
} )
Ok(spark.getState().toString())
} catch {
case NonFatal(e)=>{
println("failed with exception: " + e)
}
}
Ok
}
答案 0 :(得分:1)
SparkLauncher
允许以编程方式运行spark-submit
命令。它作为JVM中的单独子线程运行。您需要在客户端主函数中等待,直到驱动程序在K8中启动并且您获得侦听器回调。否则,JVM主线程存在杀死客户端而不报告任何内容。
----------------------- -----------------------
| User App | spark-submit | Spark App |
| | -------------------> | |
| ------------| |------------- |
| | | hello | | |
| | L. Server |<----------------------| L. Backend | |
| | | | | |
| ------------- -----------------------
| | | ^
| v | |
| -------------| |
| | | <per-app channel> |
| | App Handle |<------------------------------
| | |
-----------------------
我添加了一个j.u.c.CountDownLatch
实现,可以阻止主线程退出,直到达到appState.isFinal
。
object SparkLauncher {
def main(args: Array[String]) {
import java.util.concurrent.CountDownLatch
val countDownLatch = new CountDownLatch(1)
val launcher = new SparkLauncher()
.setMaster("k8s://http://127.0.0.1:8001")
.setAppResource("local:/{PATH}/spark-examples_2.11-2.3.0.jar")
.setConf("spark.app.name","spark-pi")
.setMainClass("org.apache.spark.examples.SparkPi")
.setConf("spark.executor.instances","5")
.setConf("spark.kubernetes.container.image","spark:spark-docker")
.setConf("spark.kubernetes.driver.pod.name","spark-pi-driver")
.setDeployMode("cluster")
.startApplication(new SparkAppHandle.Listener() {
def infoChanged(handle: SparkAppHandle): Unit = {
}
def stateChanged(handle: SparkAppHandle): Unit = {
val appState = handle.getState()
println(s"Spark App Id [${handle.getAppId}] State Changed. State [${handle.getState}]")
if (appState != null && appState.isFinal) {
countDownLatch.countDown //waiting until spark driver exits
}
}
})
countDownLatch.await()
}
}