library(data.table)
library(lubridate)
df <- data.table(col1 = c('A', 'A', 'A', 'B', 'B', 'B'), col2 = c("2015-03-06 01:37:57", "2015-03-06 01:39:57", "2015-03-06 01:45:28", "2015-03-06 02:31:44", "2015-03-06 03:55:45", "2015-03-06 04:01:40"))
对于每一行,我想计算具有相同值'col1'的行的时间(col2)的标准偏差,以及在该行的时间之前过去10分钟的窗口内的时间(包括)
我使用下一种方法:
df$col2 <- as_datetime(df$col2)
gap <- 10L
df[, feat1 := .SD[.(col1 = col1, t1 = col2 - gap * 60L, t2 = col2)
, on = .(col1, col2 >= t1, col2 <= t2)
, .(sd_time = sd(as.numeric(col2))), by = .EACHI]$sd_time][]
结果我只看到NA值而不是以秒为单位的值
例如第三行(col =“A”和col2 =“2015-03-06 01:45:28”) 我已通过下一步方式手动计算:
v <- c("2015-03-06 01:37:57", "2015-03-06 01:39:57", "2015-03-06 01:45:28")
v <- as_datetime(v)
sd(v) = 233.5815
答案 0 :(得分:1)
两个替代data.table
解决方案(my previous answer上的变体):
# option 1
df[.(col1 = col1, t1 = col2, t2 = col2 + gap * 60L)
, on = .(col1, col2 >= t1, col2 <= t2)
, .(col1, col2 = x.col2, times = as.numeric(t1))
][, .(feat1 = sd(times))
, by = .(col1, col2)]
# option 2
df[, feat1 := .SD[.(col1 = col1, t1 = col2, t2 = col2 + gap * 60L)
, on = .(col1, col2 >= t1, col2 <= t2)
, .(col1, col2 = x.col2, times = as.numeric(t1))
][, .(sd_times = sd(times))
, by = .(col1, col2)]$sd_times][]
两者都给出了:
col1 col2 feat1 1: A 2015-03-06 00:37:57 NA 2: A 2015-03-06 00:39:57 84.85281 3: A 2015-03-06 00:45:28 233.58153 4: B 2015-03-06 01:31:44 NA 5: B 2015-03-06 02:55:45 NA 6: B 2015-03-06 03:01:40 251.02291
答案 1 :(得分:0)
纯data.table
解决方案:
df[,col3:=as.numeric(col2)]
df[, feat1 := {
d <- data$col3 - col3
sd(data$col3[col1 == data$col1 & d <= 0 & d >= -gap * 60L])
},
by = list(col3, col1)]
使用mapply
循环col1,col2的所有组合的另一种方法:
df[,col3:=as.numeric(col2)]
df[, feat1:=mapply(Date = col3,ID = col1, function(Date, ID) {
DateVect=df[col1 == ID,col3]
d <- DateVect - Date
sd(DateVect[d <= 0 & d >= -gap * 60L])})][]