代码如下:
import spacy
from nltk import Tree
en_nlp = spacy.load('en')
parsed = en_nlp(u"Photos under low lighting are poor, both front and back cameras.")
print(u'sentence:{0}'.format(parsed.text))
try2 = []
print(u'parsed_sentence_children::{0}'.format([(x.text,x.pos_,x.dep_,[(x.text,x.dep_) for x in list(x.children)]) for x in parsed]))
print("\n\n")
for x in parsed:
if x.pos_=="NOUN" and x.dep_=="nsubj":
print(u'Noun and noun subject:{0}'.format(try2 =[(x.text,x.pos_,x.dep_,[(x.text,x.pos_)for x in list(x.ancestors)])])
输出到:
[(你'照片',你' NOUN',你' nsubj',[(你',' VERB' )]
现在我希望打印
的acomp
个孩子
[(你',你' VERB')]
是
的祖先[(你'照片',你' NOUN',你' nsubj')]
我该怎么做?
答案 0 :(得分:1)
您可以遍历令牌:
import spacy
nlp = spacy.load('en')
text = 'Photos under low lighting are poor, both front and back cameras.'
for token in nlp(text):
if token.dep_ == 'nsubj': # Or other forms of subjects / objects
print(token.lemma_+"'s are:")
for a in token.ancestors:
if a.text == 'are': # Or however you determine your selection
for atok in a.children:
if atok.dep_ == 'acomp': # Note, you should look for more than just acomp
print(atok.text)
哪些输出(在Python3中):
photo's are:
poor
但是,请查看Spacy's page on dependencies。有很多事要考虑。你可以玩DisplaCy(这个链接也是一个类似句子的例子,它有不同的依赖关系)。
我希望这至少有助于让你指出正确的方向!