我对使用plotly python api制作3D轨迹动画感兴趣。
通过混合有关plotly animation和plotly 3d line plot的文档中的一些代码,我提出了以下实现,它应该在jupyter笔记本中为3d中的布朗运动设置动画。
# Cell 1
import numpy as np
import plotly.plotly as py
import plotly.graph_objs as go
from plotly.grid_objs import Grid, Column
这里我使用numpy创建随机运动。每行代表具有3个坐标的轨迹点。 (我随后放了一个随机种子来缩放轴)
# Cell 2
np.random.seed(0)
brownian_motion = np.cumsum(np.random.uniform(low=-0.5, high=0.5, size=(25,3)), axis=0)
我尝试直接使用此np.array
作为输入来创建动画,但是我收到错误,指出我无法使用原始数据创建动画,而是应该使用网格。我正在使用情节Column
和Grid
类在笔记本的下一个单元格中构建此网格。
# Cell 3
my_columns = []
nr_frames = brownian_motion.shape[0]
for k in range(nr_frames):
my_columns.extend(
[Column(brownian_motion[:k+1,0], 'x{}'.format(k+1)),
Column(brownian_motion[:k+1,1], 'y{}'.format(k+1)),
Column(brownian_motion[:k+1,2], 'z{}'.format(k+1))
])
grid = Grid(my_columns)
最后,我尝试构建动画scatter3d线图。
# Cell 4
data = [dict(
type='scatter3d',
xsrc = grid.get_column_reference('x1'),
ysrc = grid.get_column_reference('y1'),
zsrc = grid.get_column_reference('z1'),
marker=dict(
size=4
),
line=dict(
color='#1f77b4',
width=1
)
)]
frames = []
for k in range(nr_frames):
frames.append(
dict(
data = dict(
xsrc=grid.get_column_reference('x{}'.format(k+1)),
ysrc=grid.get_column_reference('y{}'.format(k+1)),
zsrc=grid.get_column_reference('z{}'.format(k+1))
)
)
)
layout = dict(
width=800,
height=700
)
fig = dict(data=data, frames= frames, layout=layout)
py.create_animations(fig)
然而,我得到了这个难以理解的错误:
---------------------------------------------------------------------------
JSONDecodeError Traceback (most recent call last)
~\AppData\Local\Continuum\anaconda3\lib\site-packages\plotly\api\v2\utils.py in validate_response(response)
65 try:
---> 66 parsed_content = response.json()
67 except ValueError:
~\AppData\Local\Continuum\anaconda3\lib\site-packages\requests\models.py in json(self, **kwargs)
891 pass
--> 892 return complexjson.loads(self.text, **kwargs)
893
~\AppData\Local\Continuum\anaconda3\lib\json\__init__.py in loads(s, encoding, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw)
353 parse_constant is None and object_pairs_hook is None and not kw):
--> 354 return _default_decoder.decode(s)
355 if cls is None:
~\AppData\Local\Continuum\anaconda3\lib\json\decoder.py in decode(self, s, _w)
338 """
--> 339 obj, end = self.raw_decode(s, idx=_w(s, 0).end())
340 end = _w(s, end).end()
~\AppData\Local\Continuum\anaconda3\lib\json\decoder.py in raw_decode(self, s, idx)
356 except StopIteration as err:
--> 357 raise JSONDecodeError("Expecting value", s, err.value) from None
358 return obj, end
JSONDecodeError: Expecting value: line 1 column 1 (char 0)
During handling of the above exception, another exception occurred:
PlotlyRequestError Traceback (most recent call last)
<ipython-input-3-dc743f0d5686> in <module>()
33
34 fig = dict(data=data, frames= frames, layout=layout)
---> 35 py.create_animations(fig)
~\AppData\Local\Continuum\anaconda3\lib\site-packages\plotly\plotly\plotly.py in create_animations(figure, filename, sharing, auto_open)
1796 )
1797
-> 1798 response = v2.plots.create(body)
1799 parsed_content = response.json()
1800
~\AppData\Local\Continuum\anaconda3\lib\site-packages\plotly\api\v2\plots.py in create(body)
16 """
17 url = build_url(RESOURCE)
---> 18 return request('post', url, json=body)
19
20
~\AppData\Local\Continuum\anaconda3\lib\site-packages\plotly\api\v2\utils.py in request(method, url, **kwargs)
151 content = response.content if response else 'No content'
152 raise exceptions.PlotlyRequestError(message, status_code, content)
--> 153 validate_response(response)
154 return response
~\AppData\Local\Continuum\anaconda3\lib\site-packages\plotly\api\v2\utils.py in validate_response(response)
67 except ValueError:
68 message = content if content else 'No Content'
---> 69 raise exceptions.PlotlyRequestError(message, status_code, content)
70
71 message = ''
PlotlyRequestError: <!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<title>Plotly</title>
<style>
body { background-color: #f3f3f3; }
.error-page {
margin-top: 5%;
}
.error-page-logo {
width: 350px;
margin: auto;
}
.error-page-logo img {
max-width: 100%;
}
.error-page-text,
.error-page-subtext {
text-align: center;
color: #1d3b84;
font-family: 'Open Sans', verdana, arial, sans-serif;
font-size: 24px;
font-weight: 400;
line-height: 1.5;
}
.error-page-subtext {
color: #69738a;
font-size: 16px;
}
a {
font-size: 14px;
text-decoration: none;
color: #447bdc;
}
a:hover {
color: #1d3b84;
}
</style>
</head>
<body>
<div class="error-page">
<div class="error-page-logo">
<img alt="plotly" src="" />
</div>
<p class="error-page-text">Uh oh. An error occurred while loading this page.</p>
<p class="error-page-subtext">
Try refreshing the page. If the problem persists, open an issue at <a href="https://support.plot.ly">support.plot.ly</a>.
Thanks for your patience and sorry for the delay.
</p>
<p class="error-page-subtext">
<a href="//plot.ly/">Main site</a>
<a href="//twitter.com/plotlygraphs">@plotlygraphs</a>
<a href="//twitter.com/plotlystatus">@PlotlyStatus</a>
</p>
</div>
</body>
</html>
知道我怎么能做到吗?