如何在python中使用plotly构建一个3D动画

时间:2018-03-14 02:36:22

标签: python animation 3d jupyter-notebook plotly

我对使用plotly python api制作3D轨迹动画感兴趣。

通过混合有关plotly animationplotly 3d line plot的文档中的一些代码,我提出了以下实现,它应该在jupyter笔记本中为3d中的布朗运动设置动画。

# Cell 1
import numpy as np
import plotly.plotly as py
import plotly.graph_objs as go
from plotly.grid_objs import Grid, Column

这里我使用numpy创建随机运动。每行代表具有3个坐标的轨迹点。 (我随后放了一个随机种子来缩放轴)

# Cell 2
np.random.seed(0)
brownian_motion = np.cumsum(np.random.uniform(low=-0.5, high=0.5, size=(25,3)), axis=0)

我尝试直接使用此np.array作为输入来创建动画,但是我收到错误,指出我无法使用原始数据创建动画,而是应该使用网格。我正在使用情节ColumnGrid类在笔记本的下一个单元格中构建此网格。

# Cell 3
my_columns = []
nr_frames = brownian_motion.shape[0]
for k in range(nr_frames):
    my_columns.extend(
        [Column(brownian_motion[:k+1,0], 'x{}'.format(k+1)),
         Column(brownian_motion[:k+1,1], 'y{}'.format(k+1)),
         Column(brownian_motion[:k+1,2], 'z{}'.format(k+1))
        ])
grid = Grid(my_columns)    

最后,我尝试构建动画scatter3d线图。

# Cell 4
data = [dict(
    type='scatter3d',
    xsrc = grid.get_column_reference('x1'),
    ysrc = grid.get_column_reference('y1'),
    zsrc = grid.get_column_reference('z1'),
    marker=dict(
        size=4
    ),
    line=dict(
        color='#1f77b4',
        width=1
    )
)]


frames = []

for k in range(nr_frames):
    frames.append(
        dict(
            data = dict(
                xsrc=grid.get_column_reference('x{}'.format(k+1)),
                ysrc=grid.get_column_reference('y{}'.format(k+1)),
                zsrc=grid.get_column_reference('z{}'.format(k+1))
            )
        )
    )

layout = dict(
    width=800,
    height=700
)

fig = dict(data=data, frames= frames, layout=layout)
py.create_animations(fig)

然而,我得到了这个难以理解的错误:

---------------------------------------------------------------------------
JSONDecodeError                           Traceback (most recent call last)
~\AppData\Local\Continuum\anaconda3\lib\site-packages\plotly\api\v2\utils.py in validate_response(response)
     65     try:
---> 66         parsed_content = response.json()
     67     except ValueError:

~\AppData\Local\Continuum\anaconda3\lib\site-packages\requests\models.py in json(self, **kwargs)
    891                     pass
--> 892         return complexjson.loads(self.text, **kwargs)
    893 

~\AppData\Local\Continuum\anaconda3\lib\json\__init__.py in loads(s, encoding, cls, object_hook, parse_float, parse_int, parse_constant, object_pairs_hook, **kw)
    353             parse_constant is None and object_pairs_hook is None and not kw):
--> 354         return _default_decoder.decode(s)
    355     if cls is None:

~\AppData\Local\Continuum\anaconda3\lib\json\decoder.py in decode(self, s, _w)
    338         """
--> 339         obj, end = self.raw_decode(s, idx=_w(s, 0).end())
    340         end = _w(s, end).end()

~\AppData\Local\Continuum\anaconda3\lib\json\decoder.py in raw_decode(self, s, idx)
    356         except StopIteration as err:
--> 357             raise JSONDecodeError("Expecting value", s, err.value) from None
    358         return obj, end

JSONDecodeError: Expecting value: line 1 column 1 (char 0)

During handling of the above exception, another exception occurred:

PlotlyRequestError                        Traceback (most recent call last)
<ipython-input-3-dc743f0d5686> in <module>()
     33 
     34 fig = dict(data=data, frames= frames, layout=layout)
---> 35 py.create_animations(fig)

~\AppData\Local\Continuum\anaconda3\lib\site-packages\plotly\plotly\plotly.py in create_animations(figure, filename, sharing, auto_open)
   1796         )
   1797 
-> 1798     response = v2.plots.create(body)
   1799     parsed_content = response.json()
   1800 

~\AppData\Local\Continuum\anaconda3\lib\site-packages\plotly\api\v2\plots.py in create(body)
     16     """
     17     url = build_url(RESOURCE)
---> 18     return request('post', url, json=body)
     19 
     20 

~\AppData\Local\Continuum\anaconda3\lib\site-packages\plotly\api\v2\utils.py in request(method, url, **kwargs)
    151         content = response.content if response else 'No content'
    152         raise exceptions.PlotlyRequestError(message, status_code, content)
--> 153     validate_response(response)
    154     return response

~\AppData\Local\Continuum\anaconda3\lib\site-packages\plotly\api\v2\utils.py in validate_response(response)
     67     except ValueError:
     68         message = content if content else 'No Content'
---> 69         raise exceptions.PlotlyRequestError(message, status_code, content)
     70 
     71     message = ''

PlotlyRequestError: <!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8" />
    <title>Plotly</title>

    <style>
        body { background-color: #f3f3f3; }

        .error-page {
            margin-top: 5%;
        }

        .error-page-logo {
            width: 350px;
            margin: auto;
        }

        .error-page-logo img {
            max-width: 100%;
        }

        .error-page-text,
        .error-page-subtext {
            text-align: center;
            color: #1d3b84;
            font-family: 'Open Sans', verdana, arial, sans-serif;
            font-size: 24px;
            font-weight: 400;
            line-height: 1.5;
        }

        .error-page-subtext {
            color: #69738a;
            font-size: 16px;
        }

        a {
            font-size: 14px;
            text-decoration: none;
            color: #447bdc;
        }


        a:hover {
            color: #1d3b84;
        }
    </style>
</head>

<body>
    <div class="error-page">
        <div class="error-page-logo">
            <img alt="plotly" src="" />
        </div>


        <p class="error-page-text">Uh oh. An error occurred while loading this page.</p>
        <p class="error-page-subtext">
            Try refreshing the page. If the problem persists, open an issue at <a href="https://support.plot.ly">support.plot.ly</a>.
            Thanks for your patience and sorry for the delay.
        </p>

        <p class="error-page-subtext">
            <a href="//plot.ly/">Main site</a>
            &nbsp; &nbsp; &nbsp;
            <a href="//twitter.com/plotlygraphs">@plotlygraphs</a>
            &nbsp; &nbsp; &nbsp;
            <a href="//twitter.com/plotlystatus">@PlotlyStatus</a>
        </p>
    </div>
</body>
</html>

知道我怎么能做到吗?

0 个答案:

没有答案