HI,
我试图找到一个通用表达式来获得order
和n_variables
的多元多项式的指数,就像公式(3)中reference中所示的那样。
这是我当前的代码,它使用itertools.product
生成器。
def generalized_taylor_expansion_exponents( order, n_variables ):
"""
Find the exponents of a multivariate polynomial expression of order
`order` and `n_variable` number of variables.
"""
exps = (p for p in itertools.product(range(order+1), repeat=n_variables) if sum(p) <= order)
# discard the first element, which is all zeros..
exps.next()
return exps
理想的是:
for i in generalized_taylor_expansion_exponents(order=3, n_variables=3):
print i
(0, 0, 1)
(0, 0, 2)
(0, 0, 3)
(0, 1, 0)
(0, 1, 1)
(0, 1, 2)
(0, 2, 0)
(0, 2, 1)
(0, 3, 0)
(1, 0, 0)
(1, 0, 1)
(1, 0, 2)
(1, 1, 0)
(1, 1, 1)
(1, 2, 0)
(2, 0, 0)
(2, 0, 1)
(2, 1, 0)
(3, 0, 0)
实际上这段代码执行速度很快,因为只创建了生成器对象。如果我想用这个生成器中的值填充列表,执行确实开始变慢,主要是因为对sum
的调用次数很多。 order
和n_variables
的典型值分别为5和10。
如何显着提高执行速度?
感谢您的帮助。
Davide Lasagna
答案 0 :(得分:2)
实际上,您最大的性能问题是,您生成的大多数元组都太大而且需要被丢弃。以下内容应该生成您想要的元组。
def generalized_taylor_expansion_exponents( order, n_variables ):
"""
Find the exponents of a multivariate polynomial expression of order
`order` and `n_variable` number of variables.
"""
pattern = [0] * n_variables
for current_sum in range(1, order+1):
pattern[0] = current_sum
yield tuple(pattern)
while pattern[-1] < current_sum:
for i in range(2, n_variables + 1):
if 0 < pattern[n_variables - i]:
pattern[n_variables - i] -= 1
if 2 < i:
pattern[n_variables - i + 1] = 1 + pattern[-1]
pattern[-1] = 0
else:
pattern[-1] += 1
break
yield tuple(pattern)
pattern[-1] = 0
答案 1 :(得分:0)
我会尝试递归地编写它,以便只生成所需的元素:
def _gtee_helper(order, n_variables):
if n_variables == 0:
yield ()
return
for i in range(order + 1):
for result in _gtee_helper(order - i, n_variables - 1):
yield (i,) + result
def generalized_taylor_expansion_exponents(order, n_variables):
"""
Find the exponents of a multivariate polynomial expression of order
`order` and `n_variable` number of variables.
"""
result = _gtee_helper(order, n_variables)
result.next() # discard the first element, which is all zeros
return result