在R中我有:
library(tidyverse)
full_names <- tibble(FIRM = c("APPLE INC.", "MICROSOFT CORPORATION", "GOOGLE", "TESLA INC.", "ABBOTT LABORATORIES"),
TICKER = c("AAPL", "MSFT", "GOOGL", "TSLA", "ABT"),
ID = c(111, 222, 333, 444, 555)) # a dataset with full names of firms, including some IDs
abbr_names <- c("Abbott", "Apple", "Coca-Cola", "Pepsi, "Microsoft", "Tesla") # a vector with abbreviated names of firms
我想检查缩写名称是否在全名数据集中,如果为true,则随后将full_names行与abbr_names向量匹配,如:
[1] [2] [3] [4]
[1] Abbott ABBOTT LABORATORIES ABT 555
[2] Apple APPLE INC. AAPL 111
[3] Microsoft MICROSOFT CORPORATION MSFT 222
[4] Tesla TESLA INC. TSLA 444
尝试了几个str_extract和grepl函数,但还没能使它工作。
答案 0 :(得分:3)
matches <- unlist(sapply(toupper(abbr_names), grep, x = full_names$FIRM, value = TRUE))
这将为您提供一个名称为缩写,公司为值
的向量names(matches)
# [1] "ABBOTT" "APPLE" "MICROSOFT" "TESLA"
c(firm_matches, use.names = FALSE)
# [1] "ABBOTT LABORATORIES" "APPLE INC." "MICROSOFT CORPORATION" "TESLA INC."
有很多方法可以将它们组合在一起... ... ...
根据@Oscar的评论,我们得到了所需的输出,总共有两行代码:
matches <- unlist(sapply(toupper(abbr_names), grep, x = full_names$FIRM, value = TRUE))
tibble(ABBR_FIRM = names(matches), FIRM = matches) %>% left_join(., full_names, by = "FIRM")
答案 1 :(得分:1)
怎么样?
#
答案 2 :(得分:0)
另一种选择可能是例如......
map_int(abbr_names, ~ {
idx <- grep(., full_names$FIRM, ignore.case = TRUE)
if (length(idx) == 0) return(NA) else return(idx)
}) %>%
cbind(ABBR = abbr_names, FIRM = full_names$FIRM[.]) %>%
as.tibble() %>%
left_join(full_names, by = "FIRM") %>%
complete(FIRM)
# A tibble: 4 x 5
FIRM . ABBR TICKER ID
<chr> <chr> <chr> <chr> <dbl>
1 ABBOTT LABORATORIES 5 Abbott ABT 555
2 APPLE INC. 1 Apple AAPL 111
3 MICROSOFT CORPORATION 2 Microsoft MSFT 222
4 TESLA INC. 4 Tesla TSLA 444
只是想发布它:)
答案 3 :(得分:0)
我建议,将所有单词打开为大写或小写。 grepl
进行比较更容易实现功能。
我的代码:
library(tidyverse)
full_names <- tibble(FIRM = c("APPLE INC.", "MICROSOFT CORPORATION", "GOOGLE", "TESLA INC.", "ABBOTT LABORATORIES"),
TICKER = c("AAPL", "MSFT", "GOOGL", "TSLA", "ABT"),
ID = c(111, 222, 333, 444, 555)) # a dataset with full names of firms, including some IDs
abbr_names <- c("Abbott", "Apple", "Coca-Cola", "Microsoft", "Tesla") # a vector with abbreviated names of firms
在这里,我创建了一个新列,我们想要索引grepl
full_names$new_column <- NA
然后,我在名称中做了一个我们要在数据框中索引的循环
for(i in 1:length(abbr_names)){
search_test <- grepl(tolower(substr(abbr_names[i], 0,4)), tolower(full_names$FIRM))
position <- grep("TRUE", search_test)
full_names$new_column[position] <- abbr_names[i]
}
结果是以下数据框:
FIRM TICKER ID new_column
1 APPLE INC. AAPL 111 Apple
2 MICROSOFT CORPORATION MSFT 222 Microsoft
3 GOOGLE GOOGL 333 NA
4 TESLA INC. TSLA 444 Tesla
5 ABBOTT LABORATORIES ABT 555 Abbott
“GOOG”不在abbr_names向量中,因此返回值为NA