我使用Keras进行CNN两级分类。训练我的val_acc超过95%。但是,当我预测相同验证数据的结果时,acc小于60%,那是否可能?这是我的代码:
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Convolution2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
from keras.callbacks import TensorBoard
from keras.preprocessing import image
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(1337) # for reproducibility
%matplotlib inline
img_width, img_height = 230,170
train_data_dir = 'data/Train'
validation_data_dir = 'data/Validation'
nb_train_samples = 13044
nb_validation_samples = 200
epochs =14
batch_size = 32
if K.image_data_format() == 'channels_first':
input_shape = (1, img_width, img_height)
else:
input_shape = (img_width, img_height, 1)
model = Sequential()
model.add(Convolution2D(32, (3, 3),data_format='channels_first' , input_shape=(1,230,170)))
convout1 = Activation('relu')
model.add(convout1)
convout2 = MaxPooling2D(pool_size=(2,2 ), strides= None , padding='valid', data_format='channels_first')
model.add(convout2)
model.add(Convolution2D(32, (3, 3),data_format='channels_first'))
convout3 = Activation('relu')
model.add(convout3)
model.add(MaxPooling2D(pool_size=(2, 2), data_format='channels_first'))
model.add(Convolution2D(64, (3, 3),data_format='channels_first'))
convout4 = Activation('relu')
model.add(convout4)
convout5 = MaxPooling2D(pool_size=(2, 2), data_format='channels_first')
model.add(convout5)
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
train_datagen = ImageDataGenerator(rescale=1. / 255,
shear_range=0,
zoom_range=0.2,
horizontal_flip=False,
data_format='channels_first')
test_datagen = ImageDataGenerator(rescale=1. / 255,
data_format='channels_first')
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary',
color_mode= "grayscale",
shuffle=True
)
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary',
color_mode= "grayscale",
shuffle=True
)
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size,
shuffle=True
)
大纪元37/37
407/407 [==============] - 1775s 4s /步 - 损失:0.12 - acc:0.96 - val_loss:0.02 - val_acc:0.99
#Prediction:
test_data_dir='data/test'
validgen = ImageDataGenerator(horizontal_flip=False, data_format='channels_first')
test_gen = validgen.flow_from_directory(
test_data_dir,
target_size=(img_width, img_height),
batch_size=1,
class_mode='binary',
shuffle=False,
color_mode= "grayscale")
preds = model.predict_generator(test_gen)
在下面的输出中,大约有7个图像属于0级。我对0级验证数据的所有100张图像尝试了同样的情况,只有15张图像被预测为0级,剩余部分被预测为1级
Found 10 images belonging to 1 classes.
[[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 1.]
[ 0.]
[ 0.]
[ 1.]]
答案 0 :(得分:3)
您没有按照训练和验证图像中的1./255缩放测试图像。理想情况下,测试数据的统计数据应与训练数据类似。
答案 1 :(得分:0)
因此,我决定发布我在Quora中发布的答案,但要注意的是必不可少的部分。我也有与此类似的问题,希望我的回答也能对其他人有所帮助。我决定在Internet上进行研究,并遇到了这个answer by cjbayron。
帮助我解决类似问题的是,我在代码中训练了以下内容:
import keras
import os
from keras import backend as K
import tensorflow as tf
import random as rn
import numpy as np
os.environ['PYTHONHASHSEED'] = '0'
np.random.seed(70)
rn.seed(70)
tf.set_random_seed(70)
/******* code for my model ******/
#very important here to save session after completing model.fit
model.fit_generator(train_batches, steps_per_epoch=4900, validation_data=valid_batches,validation_steps=1225, epochs=40, verbose=2, callbacks=callbacks_list)
saver = tf.train.Saver()
sess = keras.backend.get_session()
saver.save(sess, 'gdrive/My Drive/KerasCNN/model/keras_session/session.ckpt')
保存的会话也会生成以下文件:
我也从Google云端硬盘下载了所有这些文件,并将它们放在本地目录中。您可能会注意到,似乎没有名为 session.ckpt 的文件,而是在saver.restore()中使用了该文件。没关系Tensorflow还可以解决这个问题。它不会带来错误。
在model.load_model()期间
因此在我的Pycharm中,我按如下方式加载了模型:
model=load_model('C:\\Users\\Username\\PycharmProjects\\MyProject\\mymodel\\mymodel.h5')
saver = tf.train.Saver()
sess = keras.backend.get_session()
saver.restore(sess,'C:\\Users\\Username\\PycharmProjects\\MyProject\\mymodel\\keras_session\\session.ckpt')
/***** then predict the images as you wish ******/
pred = model.predict_classes(load_image(os.path.join(test_path, file)))
重要的是要放置恢复代码,如图所示,即在加载模型之后。 完成此操作后,我尝试预测用于训练和验证的相同图像,而这次,该模型错误地预测了每班2张图像。现在我确定我的模型还可以,并且我继续用我的测试图像进行预测,即以前从未见过的图像,并且表现很好。