我多次调用API并最终将结果写入CSV。我有以下代码从dict
:
city = data['property'][0]['address']['locality']
zip_code = data['property'][0]['address']['postal1']
county = data['property'][0]['area']['countrysecsubd']
condition = data['property'][0]['building']['construction']['condition']
roof = data['property'][0]['building']['construction']['roofcover']
bathrooms = data['property'][0]['building']['rooms']['bathstotal']
bedrooms = data['property'][0]['building']['rooms']['beds']
total_number_of_rooms = data['property'][0]['building']['rooms']['roomsTotal']
square_footage = data['property'][0]['building']['size']['bldgsize']
year_built = data['property'][0]['summary']['yearbuilt']
number_of_stories = data['property'][0]['building']['summary']['levels']
lot_size1 = data['property'][0]['lot']['lotsize1']
lot_size2 = data['property'][0]['lot']['lotsize2']
latitude = data['property'][0]['location']['latitude']
longitude = data['property'][0]['location']['longitude']
Pastebin上dict
的结构为here,因为它占用了大量空间。
如何用更少的代码获得相同的结果?
答案 0 :(得分:2)
编写一个帮助函数,让你编写更少的样板:
def follow(obj, path):
for seg in path.split():
obj = obj[int(seg) if seg.isdigit() else seg]
return obj
通话:
prop = follow(data, "property 0")
city = follow(prop, "address locality")
等
答案 1 :(得分:1)
如何创建自己的字典类
class DictQuery(dict):
def get(self, path, default = None):
keys = path.split("/")
val = None
for key in keys:
if val:
if isinstance(val, list):
val = [ v.get(key, default) if v else None for v in val]
else:
val = val.get(key, default)
else:
val = dict.get(self, key, default)
if not val:
break;
return val
然后,你可以这样称呼它
for row in csv:
print(DictQuery(row).get("property/address"))
请注意,这是未经测试的,只是您尝试的一个想法。
答案 2 :(得分:1)
你这样做的方式是“Pythonic”。但是还有其他选择,一种是使用键,就好像它们是对象(或子对象)属性一样。无论是或多或少Pythonic都在旁观者的眼中。一旦脚手架到位,它肯定需要更少的打字,我觉得它也更具可读性。
实现类似的一种方法是创建一个dict
子类,它是自己的__dict__
。定义类后,其中最外层和所有子字典必须转换为AttrDict
实例。
以下代码显示了我的意思:
import json
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
def convert(d):
""" Convert dict "d" and all nested dictionaries in it into AttrDicts. """
def _decode_dict(a_dict):
return AttrDict(a_dict) # Turn each dictionary into an AttrDict
json_repr = json.dumps(d)
return json.loads(json_repr, object_hook=_decode_dict)
d = {u'status': {u'code': 0, u'pagesize': 10, u'version': u'1.0.0', u'msg': u'SuccessWithResult', u'total': 1, u'page': 1}, u'property': [{u'building': {u'summary': {u'bldgsNum': 1, u'unitsCount': u'0', u'archStyle': u'OLD', u'bldgType': u'SINGLE FAMILY', u'yearbuilteffective': 0, u'levels': 1, u'storyDesc': u'SINGLE FAMILY'}, u'construction': {u'roofcover': u'ASPHALT SHINGLE', u'wallType': u'WOOD SIDING', u'foundationtype': u'PIER', u'condition': u'FAIR'}, u'rooms': {u'bathstotal': 1.0, u'roomsTotal': 6, u'bathscalc': 1.0, u'bathfixtures': 0, u'bathsfull': 0, u'beds': 3, u'baths3qtr': 0, u'baths1qtr': 0, u'bathshalf': 0}, u'parking': {u'prkgType': u'DETACHED GARAGE', u'prkgSize': 0, u'garagetype': u'DETACHED GARAGE', u'prkgSpaces': u'0'}, u'interior': {u'fplctype': u'TYPE UNKNOWN', u'fplccount': 1, u'bsmtsize': 0, u'fplcind': u'Y'}, u'size': {u'universalsize': 1022, u'livingsize': 1022, u'sizeInd': u'LIVING SQFT ', u'grosssizeadjusted': 0, u'groundfloorsize': 1022, u'bldgsize': 1022, u'grosssize': 0}}, u'area': {u'taxcodearea': u'11', u'countrysecsubd': u'Bexar County', u'muncode': u'21', u'subdname': u'SOUTH PARK TERRACE BAITYS BL 3', u'countyuse1': u'A1', u'blockNum': u'11', u'munname': u'SAN ANTONIO'}, u'vintage': {u'lastModified': u'2017-9-23', u'pubDate': u'2017-10-12'}, u'utilities': {u'heatingtype': u'FORCED AIR', u'wallType': u'WOOD SIDING', u'coolingtype': u'AC.CENTRAL'}, u'summary': {u'proptype': u'SFR', u'propsubtype': u'SINGLE FAMILY', u'absenteeInd': u'SITUS FROM SALE (ABSENTEE)', u'propclass': u'Single Family Residence / Townhouse', u'yearbuilt': 1930, u'legal1': u'NCB 3130 BLK 11 LOT 35 AND 36', u'propIndicator': u'10', u'propLandUse': u'SFR'}, u'location': {u'distance': 0.0, u'elevation': 0.0, u'longitude': u'-98.484597', u'latitude': u'29.396664', u'geoid': u'CO48029,CS4893407,DB4838730,MT30003336,ND0000206694,ND0000567797,PL4865000,RS0000576252,SB0000123866,SB0000123853,SB0000123848,ZI78210', u'accuracy': u'Street'}, u'lot': {u'lotnum': u'35', u'depth': 133, u'lotsize2': 5320, u'frontage': 40, u'lotsize1': 0.1221}, u'address': {u'matchCode': u'ExaStr', u'postal2': u'3873', u'postal3': u'C002', u'locality': u'San Antonio', u'country': u'US', u'countrySubd': u'TX', u'line2': u'SAN ANTONIO, TX 78210', u'line1': u'202 LORETTA PL', u'postal1': u'78210', u'oneLine': u'202 LORETTA PL, SAN ANTONIO, TX 78210'}, u'identifier': {u'apn': u'031300110350', u'apnOrig': u'03130-011-0350', u'fips': u'48029', u'obPropId': 12253857148029}}]}
data = convert(d)
city = data.property[0].address.locality
print(city) # -> San Antonio
zip_code = data.property[0].address.postal1
print(zip_code) # -> 78210
county = data.property[0].area.countrysecsubd
print(county) # -> Bexar County
# and so on and so forth...
答案 3 :(得分:0)
property = data['property'][0]
city = property['address']['locality'] #etc.