如何使用Python Pandas在特定切片中制作一片DataFrame和“fillna”?

时间:2017-11-23 14:34:20

标签: python pandas dataframe data-analysis

问题:让我们从Kaggle中获取Titanic数据集。 我的数据框有“Pclass”,“Sex”和“Age”列。 我需要在“年龄”栏填写NaN,其中某个组的中位数。 如果是第一堂课的女性,我想用一年级女性的中位数填写她的年龄,而不是整个年龄段的中位数。

问题是如何在某个切片中进行此更改?

我试过了:

data['Age'][(data['Sex'] == 'female')&(data['Pclass'] == 1)&(data['Age'].isnull())].fillna(median)

其中“中位数”是我的值,但没有任何变化“inplace = True”没有帮助。

非常感谢!

3 个答案:

答案 0 :(得分:3)

我相信您需要按掩码过滤并分配回来:

data = pd.DataFrame({'a':list('aaaddd'),
                     'Sex':['female','female','male','female','female','male'],
                     'Pclass':[1,2,1,2,1,1],
                     'Age':[40,20,30,20,np.nan,np.nan]})

print (data)
    Age  Pclass     Sex  a
0  40.0       1  female  a
1  20.0       2  female  a
2  30.0       1    male  a
3  20.0       2  female  d
4   NaN       1  female  d
5   NaN       1    male  d

#boolean mask
mask1 = (data['Sex'] == 'female')&(data['Pclass'] == 1)

#get median by mask without NaNs
med = data.loc[mask1, 'Age'].median()
print (med)
40.0

#repalce NaNs
data.loc[mask1, 'Age'] = data.loc[mask1, 'Age'].fillna(med)
print (data)
    Age  Pclass     Sex  a
0  40.0       1  female  a
1  20.0       2  female  a
2  30.0       1    male  a
3  20.0       2  female  d
4  40.0       1  female  d
5   NaN       1    male  d

与...相同:

mask2 = mask1 &(data['Age'].isnull())

data.loc[mask2, 'Age'] = med
print (data)
    Age  Pclass     Sex  a
0  40.0       1  female  a
1  20.0       2  female  a
2  30.0       1    male  a
3  20.0       2  female  d
4  40.0       1  female  d
5   NaN       1    male  d

编辑:

如果需要用中位数替换所有组NaN

data['Age'] = data.groupby(["Sex","Pclass"])["Age"].apply(lambda x: x.fillna(x.median()))
print (data)

    Age  Pclass     Sex  a
0  40.0       1  female  a
1  20.0       2  female  a
2  30.0       1    male  a
3  20.0       2  female  d
4  40.0       1  female  d
5  30.0       1    male  d

答案 1 :(得分:1)

如果你想为每个群体做同样的事情,你可以使用这个技巧

data = pd.DataFrame({'a':list('aaaddd'),
                    'Sex':['female','female','male','female','female','male'],
                    'Pclass':[1,2,1,2,1,1],
                    'Age':[40,20,30,20, np.nan, np.nan]})
df = data.groupby(["Sex","Pclass"])["Age"].median().to_frame().reset_index()
df.rename(columns={"Age":"Med"}, inplace=True)
data = pd.merge(left=data,right=df, how='left', on=["Sex", "Pclass"])
data["Age"] = np.where(data["Age"].isnull(), data["Med"], data["Age"])

<强>更新

# dummy dataframe
n = int(1e7)
data = pd.DataFrame({"Age":np.random.choice([10,20,20,30,30,40,np.nan], n),
                     "Pclass":np.random.choice([1,2,3], n),
                     "Sex":np.random.choice(["male","female"], n),
                     "a":np.random.choice(["a","b","c","d"], n)})

在我的机器上运行它(如前所述,没有重命名)

df = data.groupby(["Sex","Pclass"])["Age"].agg(['median']).reset_index()
data = pd.merge(left=data,right=df, how='left', on=["Sex", "Pclass"])
data["Age"] = np.where(data["Age"].isnull(), data["median"], data["Age"])

CPU times: user 1.98 s, sys: 216 ms, total: 2.2 s
Wall time: 2.2 s

虽然掩码解决方案采取了:

for sex in ["male", "female"]:
    for pclass in range(1,4):
        mask1 =(data['Sex'] == sex)&(data['Pclass'] == pclass)
        med = data.loc[mask1, 'Age'].median()
        data.loc[mask1, 'Age'] = data.loc[mask1, 'Age'].fillna(med)

CPU times: user 5.13 s, sys: 60 ms, total: 5.19 s
Wall time: 5.19 s

@jezrael解决方案更快

data['Age'] = data.groupby(["Sex","Pclass"])["Age"].apply(lambda x: x.fillna(x.median()))

CPU times: user 1.34 s, sys: 92 ms, total: 1.44 s
Wall time: 1.44 s

答案 2 :(得分:0)

我想在这里添加一个效率更高的答案,因为它涉及的代码更少。本质上,如果您使用布尔条件对数据帧进行切片,并在这些特定条件下使用.fillna,则只需使用赋值:

我将使用另一个Kaggle竞赛的示例:

# Use a mask as suggested by jesrael. It's just neater:
mask1 = (test_df.Neighborhood == 'IDOTRR') & (test_df.MSZoning.isna())
mask2 = (test_df.Neighborhood == 'Mitchel') & (test_df.MSZoning.isna())

# Use the mask and assign the desired value 
test_df.loc[mask1, 'MSZoning'] = 'RM'
test_df.loc[mask2, 'MSZoning'] = 'RL'

这与jesrael的回答不同,因为他/她使用.fillna()分配回屏蔽的数据帧。如果要使用遮罩,并且要牢记特定的值,则无需使用'.fillna()'