我有一个函数f,我想在滑动窗口中高效计算。
def efficient_f(x):
# do stuff
wSize=50
return another_f(rolling_window_using_strides(x, wSize), -1)
我在SO上看到使用步幅来做这件事特别有效: 来自numpy.lib.stride_tricks导入as_strided
def rolling_window_using_strides(a, window):
shape = a.shape[:-1] + (a.shape[-1] - window + 1, window)
strides = a.strides + (a.strides[-1],)
print np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides).shape
return np.lib.stride_tricks.as_strided(a, shape=shape, strides=strides)
然后我尝试将它应用于df:
df=pd.DataFrame(data=np.random.rand(180000,1),columns=['foo'])
df['bar']=df[['foo']].apply(efficient_f,raw=True)
# note the double [[, otherwise pd.Series.apply
# (not accepting raw, and axis kwargs) will be called instead of pd.DataFrame.
它的工作非常好,确实带来了显着的性能提升。 但是,我仍然收到以下错误:
ValueError: Shape of passed values is (1, 179951), indices imply (1, 180000).
这是因为我使用wSize = 50,产生
rolling_window_using_strides(df['foo'].values,50).shape
(1L, 179951L, 50L)
有没有办法通过边界处的零/ np.nan填充来获得
(1L, 180000, 50L)
因此与原始载体的大小相同
答案 0 :(得分:1)
这是使用np.lib.stride_tricks.as_strided
-
def strided_axis0(a, fillval, L): # a is 1D array
a_ext = np.concatenate(( np.full(L-1,fillval) ,a))
n = a_ext.strides[0]
strided = np.lib.stride_tricks.as_strided
return strided(a_ext, shape=(a.shape[0],L), strides=(n,n))
示例运行 -
In [95]: np.random.seed(0)
In [96]: a = np.random.rand(8,1)
In [97]: a
Out[97]:
array([[ 0.55],
[ 0.72],
[ 0.6 ],
[ 0.54],
[ 0.42],
[ 0.65],
[ 0.44],
[ 0.89]])
In [98]: strided_axis0(a[:,0], fillval=np.nan, L=3)
Out[98]:
array([[ nan, nan, 0.55],
[ nan, 0.55, 0.72],
[ 0.55, 0.72, 0.6 ],
[ 0.72, 0.6 , 0.54],
[ 0.6 , 0.54, 0.42],
[ 0.54, 0.42, 0.65],
[ 0.42, 0.65, 0.44],
[ 0.65, 0.44, 0.89]])